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Abstract
Deep Embedded Clustering (DEC) surpasses traditional clustering algorithms by jointly perform-
ing feature learning and cluster assignment. Although a lot of variants have emerged, they all ignore
a crucial ingredient, data augmentation, which has been widely employed in supervised deep learn-
ing models to improve the generalization. To fill this gap, in this paper, we propose the framework
of Deep Embedded Clustering with Data Augmentation (DEC-DA). Specifically, we first train an
autoencoder with the augmented data to construct the initial feature space. Then we constrain the
embedded features with a clustering loss to further learn clustering-oriented features. The cluster-
ing loss is composed of the target (pseudo label) and the actual output of the feature learning model,
where the target is computed by using clean (non-augmented) data, and the output by augmented
data. This is analogous to supervised training with data augmentation and expected to facilitate
unsupervised clustering too. Finally, we instantiate five DEC-DA based algorithms. Extensive ex-
periments validate that incorporating data augmentation can improve the clustering performance by
a large margin. Our DEC-DA algorithms become the new state of the art on various datasets.
Keywords: Deep Clustering, Data Augmentation, Unsupervised Learning, Neural Network

1. Introduction

Unsupervised clustering has been widely studied in data mining and machine learning community.
Traditional clustering algorithms, such as k-means MacQueen (1967), Spectral Clustering (SC) Ng
et al. (2002), kernel k-means Liu et al. (2016), and Gaussian Mixture Model (GMM) Bishop (2006),
partition data into separate groups with handcrafted features according to intrinsic similarity. How-
ever, these features are designed for general purpose and thus not quite suitable for a specific task.
With the development of deep learning, Deep Neural Networks (DNNs) can learn good features for
classification, and data augmentation is crucial to the performance. Recently, deep clustering algo-
rithms Xie et al. (2016); Peng et al. (2017); Dizaji et al. (2017); Guo et al. (2017); Yang et al. (2017)
adopt DNN to perform clustering, showing dramatic improvement on clustering performance. The
basic idea is that good features help produce good clustering results, and the latter in turn guides
DNN to learn better features. The two processes are iteratively performed to achieve superior per-
formance. In the end, the learned features are task-specific, which are much more suitable for
clustering. Although a lot of techniques and tricks have been introduced to deep clustering (refer
to Min et al. (2018) for a detail review), data augmentation is still overlooked to the best of our
knowledge.

To fill this gap, we propose the framework of Deep Embedded Clustering with Data Augmen-
tation (DEC-DA). The Deep Embedded Clustering (DEC) refers to the family of algorithms that
perform clustering on the embedded features of an autoencoder, including Xie et al. (2016); Guo
et al. (2017); Dizaji et al. (2017); Li et al. (2017); Yang et al. (2017). It consists of two stages:
pretraining and finetuning. We first incorporate data augmentation into the pretraining stage, which
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encourages the autoencoder to learn more smooth manifold, i.e., more representative features. Then
the finetuning stage can be further divided into two steps: cluster assignment and feature learning.
We propose to utilize data augmentation only in the step of feature learning. Because the assign-
ments to given samples are all we care about and they are used to compute the “target” for feature
learning which is supposed to be relatively trustworthy. After setting the “target”, the feature learn-
ing becomes supervised and thus is expected to benefit from data augmentation. We implement five
DEC-DA algorithms based on the proposed DEC-DA framework. Finally, we conduct extensive
experiments on four widely used image datasets, and the results validate the effectiveness of our
DEC-DA algorithms.

Our main contributions are summarized as follows:

• This is the first work to introduce data augmentation into unsupervised deep embedded clus-
tering problem to the best of our knowledge.

• We propose the framework of deep embedded clustering with data augmentation (DEC-DA)
and instantiate five specific algorithms.

• We conduct extensive experiments to validate the effectiveness of incorporating data augmen-
tation. The results show our algorithms achieve the state-of-the-art clustering performance on
four image datasets.

2. Related Work

2.1. Denoising Autoencoder

An autoencoder is a neural network that is trained to reconstruct the input. Internally, it has a hidden
layer (or embedded layer) z that defines a code to represent the input. The network consists of two
parts: an encoder z = fW (x) and a decoder x′ = gU (z). The reconstruction error ‖x′ − x‖ is used
to train the network, and the goal is to let latent code z represent input data well.

To avoid identity mapping x = gU (fW (x)), the denoising autoencoder Vincent et al. (2008)
minimizes the following objective:

L = ‖x− gU (fW (x̃))‖22 (1)

where x̃ is a copy of x but is corrupted by some form of noise (like adding Gaussian noise or ran-
domly setting the element of input data to zero). Therefore, denoising autoencoder has to recover
x from its corrupted version rather than simply copying the input. In this way, denoising autoen-
coder can force encoder fW and decoder gU to implicitly capture the structure of data generating
distribution.

In the perspective of manifold learning, as discussed in Vincent et al. (2008), the denoising
autoencoder can be seen as a way to define and learn a manifold. It learns to pull back the feature
point of noise input x̃ which may be far away from the manifold that the dataset lies on. In the end,
the corrupted data will lie on the learned manifold too, and thus the resulting autoencoder is robust
to the noise.

However, we argue that denoising autoencoder is not so suitable for the clustering task, though
it has been widely used by existing deep clustering algorithms. We give an alternative autoencoder
which directly uses augmented data (e.g., applying random affine transformation) as training data.
We’ll elaborate it in Section 3.1.
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Figure 1: The framework of deep embedded clustering (DEC) family. The clustering loss Lc en-
courages the encoder to learn embedded features that are suitable for clustering task. The
reconstruction loss Lr makes sure the embedded features preserve the structure of data
generating distribution.

2.2. Deep Embedded Clustering

Deep Embedded Clustering algorithm is first proposed by Xie et al. (2016) and further improved
in various aspects by Guo et al. (2017); Dizaji et al. (2017); Li et al. (2017). To facilitate the
description, in this paper, we use DEC (without a reference appended) to represent the family of
algorithms that perform clustering on the embedded features of an autoencoder. A specific member
of DEC family is represented by NAME-[reference]. For example, the vanilla DEC proposed
by Xie et al. (2016) is referred to as DEC Xie et al. (2016), and the IDEC method proposed by Guo
et al. (2017), as another member of DEC family, is represented by IDEC Guo et al. (2017).

We give the framework of DEC family as in Figure 1. The objective is to minimize the following
loss function:

L = αLr + βLc, (2)

where Lr is the reconstruction loss of an autoencoder, Lc is some kind of clustering loss, and
(α, β) are coefficients to balance these two loss functions. Given a set of training samples X={xi ∈
RD}ni=1, whereD and n are the dimension and number of samples, the reconstruction loss is defined
by Mean of Square Errors (MSE):

Lr =
1

n

n∑
i=1

‖xi − gU (fW (xi))‖22, (3)

where fW and gU are encoder and decoder, respectively.
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Table 1: Configuration of DEC algorithms. “Conv” indicates whether to use convolutional network-
s. ∗Note that DEPICT also incorporates the reconstruction loss between internal layers.

Conv Lr Lc

DEC Xie et al. (2016) No No (5)
IDEC Guo et al. (2017) No (3) (5)
DCN Yang et al. (2017) No (3) (4)
DBC Li et al. (2017) Yes (3) (5)
DEPICT Dizaji et al. (2017) Yes (3)∗ (5)

The clustering loss, however, can be varied among family members. It can be the k-means
loss Yang et al. (2017):

Lc =
1

n

n∑
i=1

‖fW (xi)−Msi‖22, (4)

where si ∈ {0, 1}K ,1>si = 1, is the cluster assignment indicator for xi, and M = [µ1, µ2, . . . , µK ] ∈
Rd×K contains K cluster centers in embedded feature space with dimension d. The clustering loss
can also be the KullbackLeibler (KL) divergence Xie et al. (2016); Li et al. (2017); Guo et al. (2017);
Dizaji et al. (2017):

Lc = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij
, (5)

where qij is the similarity between embedded point zi and cluster center µj measured by Student’s
t-distribution Maaten and Hinton (2008):

qij =
(1 + ‖zi − µj‖2)−1∑
j(1 + ‖zi − µj‖2)−1

. (6)

And pij in (5) is the target distribution defined as

pij =
q2ij/

∑
i qij∑

j

(
q2ij/

∑
i qij

) (7)

DEC algorithms consist of two stages: pretraining and finetuning. The pretraining (set α = 1
and β = 0) learns valid features which are utilized to initialize the cluster centers. In the finetuning
stage (set β 6= 0), clustering and feature learning are jointly performed. In this way, the learned fea-
ture will be task specific, i.e., suitable for clustering task. We summarize existing DEC algorithms
in Table 1 according to the type of neural network, reconstruction loss, and clustering loss they use
during finetuning. Though demonstrating promising performance, existing DEC algorithms over-
look the data augmentation which has been widely used in supervised deep learning. We will fill
this gap by proposing the framework of DEC with data augmentation (DEC-DA).

3. Deep Embedded Clustering with Data Augmentation

As described in the last section, DEC algorithms consist of two stages: pretraining an autoencoder
by reconstruction and finetuning the network by (adding) a clustering loss. We propose to incorpo-
rate data augmentation into both stages, termed DEC-DA.
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3.1. Autoencoder with Data Augmentation

Data augmentation, such as random rotation, shifting, and cropping, is used as a regularization
in supervised neural networks to improve the generalization. Introducing data augmentation into
unsupervised learning models like autoencoders is straightforward.

Given a set of training samples X = {xi ∈ RD}ni=1, where D and n are the dimension and
number of samples. For each sample xi, a random transformation Trandom is applied to get the
augmented version x̃i = Trandom(xi). Then the loss function is

Lr =
1

n

n∑
i=1

‖x̃i − gU (fW (x̃i))‖22, (8)

where fW and gU are encoder and decoder, respectively.
By contrast with denoising autoencoder (1), we do not expect to reconstruct x from its augment-

ed version x̃. This is due to the fact that augmented samples share the same manifold with original
samples. Ideally, the manifold learned by using augmented samples should be more continuous and
smooth than that learned by using original samples. That is to say, incorporating data augmentation
can help the autoencoder learn more representative features. We also do not augment input sam-
ples by adding random noise, because the samples corrupted by noise is intrinsically away from the
manifold. It will be challenging to learn the real manifold from these samples with noise.

3.2. Finetuning with Data Augmentation

We propose the framework of DEC-DA for the finetuning stage as illustrated in Figure 2. The loss
function is

L = αLr + βLc, (9)

where the reconstruction loss Lr is defined by (8) and clustering loss Lc is k-means (4) or KL
divergence (5). The clustering losses (4) and (5) can be abstracted into the distance between the
output y and target t of the network for feature learning:

Lc = dist(y, t). (10)

In our proposed framework, the target t is computed by using clean sample x and the output y is
calculated by augmented sample x̃. The reasons are as follows.

After pretraining the autoencoder, the initial features of all samples can be extracted from the
embedded layer. Then we need to compute the clustering loss Lc which is used to do clustering and
feature learning alternatively. When we optimize Lc with regard to network parameters, the target t
will be fixed as constant. This can be regarded as supervised learning, which is supposed to benefit
from data augmentation. So we calculate the output y in (10) using augmented sample x̃.

But when the network parameters are fixed, should we update the target t by using the aug-
mented sample, too? In supervised learning, the target t is provided along with the training sample,
dominating the learning process. While in our problem, we can’t get access to the “true” target and
can only construct a relatively reliable “pseudo” target. In existing DEC algorithms, the target t
for each sample can be regarded as the center of the cluster the sample belongs to. That is to say,
the target t depends on the cluster assignment. To make sure the reliability of target t, we should
use the original samples instead of augmented ones to update the cluster assignment. Furthermore,
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Figure 2: The framework of our deep embedded clustering with data augmentation (DEC-DA). The
encoder and decoder can be fully connected networks or convolutional networks. The y
and t are the output and target of the feature learning model. The dashed line indicates
the gradient flow. The encoder at top is only used to supply the target t and thus there’s
no gradient flowing through it.
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in clustering, we only care about the cluster assignments for the given samples. Deploying data
augmentation during feature learning is also to facilitate the cluster assignment.

Beside Figure 2, the framework of DEC-DA is also summarized as in Algorithm 1.

Algorithm 1 Deep Embedded Clustering with Data Augmentation (DEC-DA)
Input: Data X; Transformation Trandom; Number of clusters K;
Output: Cluster assignment s.

1: Pretrain the autoencoder by (8) with X̃ = Trandom(X);
2: Initialize cluster centers, s, and target t;
3: while Stopping criterion not met do
4: Update network by (9) with X̃ and fixed t;
5: Update s and t by (10) with network (i.e. y) fixed;
6: end while

3.3. Instantiation and Implementation

To validate the effectiveness of our DEC-DA, we instantiate five algorithms based on vanilla DEC X-
ie et al. (2016), Improved DEC (IDEC) Guo et al. (2017), and Deep Clustering Network (DC-
N) Yang et al. (2017). The loss functions used for pretraining and finetuning are (8) and (4) re-
spectively. We only need to instantiate (10) for finetuning stage. By taking the algorithm based on
DCN Yang et al. (2017) as an example, the objective for feature learning is

min
W,U

αLr + β

(
1

n

n∑
i=1

‖fW (x̃i)−Msi‖22

)
, (11)

and the objective for clustering step is

min
M,s

1

n

n∑
i=1

‖fW (xi)−Msi‖22,

s.t. si ∈ {0, 1}K ,1>si = 1.

(12)

Since we have reimplemented all algorithms under the united framework, we use new names
to distinguish them from vanilla algorithms. We denote the algorithm that uses fully connected
networks as Fc[*], and that uses convolutional networks as Conv[*] where “[*]” can be one of
“DEC”, “IDEC”, and “DCN”. When the data augmentation is incorporated into these algorithms,
we add a suffix “-DA” to their names. All algorithms with “-DA” share the identical settings with
their counterpart. E.g., the only difference between FcDEC-DA and FcDEC is whether to use data
augmentation during training.

For all algorithms with suffix ‘-DA‘, we use the same transformation function Trandom to per-
form data augmentation: random shifting for up to 3 pixels in each direction and random rotation
for up to 10◦.

For all Fc[*] algorithms, the autoencoder is composed of eight layers with dimensions D −
500 − 500 − 2000 − 10 − 2000 − 500 − 500 − D, where D is the dimension of input samples.
Except for the input, embedded, and output layers, all internal layers are activated by ReLU Glorot
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et al. (2011). During the pretraining stage, the autoencoder is trained in an end-to-end manner for
500 epochs by using the SGD optimizer with learning rate (lr) 1.0 and momentum 0.9.

For all Conv[*] algorithms, the encoder network structure is Conv532 → Conv564 → Conv3128 →
Fc10 where Convkn denotes a convolutional layer with n filters (channels), kernel size of k × k and
stride of 2 as default. The decoder is a mirror of the encoder. Except for the input, embedded, and
output layers, all internal layers are activated by ReLU Glorot et al. (2011). The autoencoder is
pretrained end-to-end for 500 epochs using Adam Kingma and Ba (2014) with default parameters
in Keras Chollet et al. (2015). Then it is finely tuned for 20,000 iterations with batch size 256 using
Adam with default parameters.

Other specific settings for each algorithm are as follows:

• FcDEC(-DA): Set α = 0, β = 1, and optimizer SGD with lr 0.01 and momentum 0.9 for
finetuning.

• ConvDEC(-DA): Use convolutional autoencoder.

• FcIDEC(-DA): Set α = 1, β = 0.1, and optimizer SGD with lr 1.0 and momentum 0.9 for
finetuning.

• ConvIDEC(-DA): Use convolutional autoencoder.

• FcDCN(-DA): Set α = 0, β = 1, and optimizer Adam with lr 0.0001 during finetuning.

Our implementation is based on Python and Keras Chollet et al. (2015). The source code is
publicly available at Not given due to blind review protocol

4. Experiment

4.1. Experiment Settings

Datasets: We conduct experiments on four image datasets as follows.

• MNIST-full: A dataset consisting of 10 handwritten digits LeCun et al. (1998), total 70,000
samples. Each sample is a 28x28 gray image.

• MNIST-test: A dataset that only contains the test set of MNIST-full, with 10,000 samples.

• USPS1: A dataset contains 9298 gray digit images with size of 16x16.

• Fashion: A dataset of Zalando’s article images, consisting of 70,000 examples each of which
is a 28x28 gray image, divided into 10 classes Xiao et al. (2017).

All datasets are normalized by rescaling the elements to [0,1]. For algorithms that use fully con-
nected networks, each sample is simply reshaped to a vector before fed into the network.

Baseline methods: The proposed DEC-DA is compared with both conventional shallow cluster-
ing algorithms and state-of-the-art deep clustering algorithms. Shallow ones include k-means Mac-
Queen (1967), normalized-cut spectral clustering (SC-Ncut) Shi and Malik (2000), large-scale spec-
tral clustering (SC-LS) Chen and Cai (2011), locality preserving non-negative matrix factorization

1. http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Table 2: Performances of DEC and DEC-DA algorithms. “Conv”, “Aug-ae”, and “Aug-cluster” de-
note whether to use convolutional networks, to use data augmentation during pretraining,
and to use data augmentation during finetuning, respectively. Employing data augmenta-
tion in both stages leads to the best performance in most cases.

Conv Aug-ae Aug-cluster MNIST-full MNIST-test USPS Fashion
ACC NMI ACC NMI ACC NMI ACC NMI

FcDEC × × × 0.916 0.875 0.795 0.752 0.763 0.784 0.572 0.636
– × × X 0.981 0.947 0.940 0.922 0.830 0.885 0.564 0.649
– × X × 0.979 0.945 0.953 0.900 0.960 0.904 0.577 0.646
FcDEC-DA × X X 0.985 0.959 0.979 0.945 0.980 0.945 0.577 0.652
ConvDEC X × × 0.900 0.888 0.858 0.845 0.786 0.822 0.566 0.614
– X × X 0.979 0.948 0.957 0.927 0.830 0.902 0.586 0.641
– X X × 0.955 0.921 0.924 0.907 0.965 0.919 0.582 0.628
ConvDEC-DA X X X 0.985 0.960 0.983 0.958 0.987 0.962 0.586 0.636
FcIDEC × × × 0.912 0.872 0.786 0.728 0.771 0.799 0.594 0.634
– × × X 0.961 0.941 0.922 0.907 0.823 0.884 0.578 0.651
– × X × 0.976 0.939 0.952 0.894 0.967 0.918 0.576 0.645
FcIDEC-DA × X X 0.986 0.962 0.981 0.950 0.984 0.954 0.580 0.652
ConvIDEC X × × 0.901 0.891 0.860 0.847 0.792 0.827 0.570 0.621
– X × X 0.977 0.944 0.948 0.926 0.823 0.906 0.593 0.644
– X X × 0.971 0.939 0.921 0.906 0.917 0.902 0.589 0.639
ConvIDEC-DA X X X 0.983 0.955 0.979 0.950 0.984 0.955 0.584 0.638
FcDCN × × × 0.901 0.849 0.727 0.687 0.699 0.722 0.557 0.638
– × × X 0.945 0.937 0.489 0.688 0.685 0.771 0.574 0.644
– × X × 0.973 0.932 0.921 0.859 0.951 0.895 0.575 0.640
FcDCN-DA × X X 0.986 0.962 0.961 0.920 0.969 0.929 0.580 0.650
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(NMF-LP) Cai et al. (2009), zeta function based agglomerative clustering (AC-Zell) Zhao and Tang
(2008), graph degree linkage-based agglomerative clustering (AC-GDL) Zhang et al. (2012), and
robust continuous clustering (RCC) Shah and Koltun (2017). Deep clustering algorithms include
deep clustering networks (DCN) Yang et al. (2017), deep embedded clustering (DEC) Xie et al.
(2016), improved deep embedded clustering with locality preservation (IDEC) Guo et al. (2017),
cascaded subspace clustering (CSC) Peng et al. (2017), variational deep embedding (VaDE Jiang
et al. (2017)), joint unsupervised learning (JULE) Yang et al. (2016), deep embedded regular-
ized clustering (DEPICT) Dizaji et al. (2017), discriminatively boosted clustering (DBC) Li et al.
(2017), and deep adaptive clustering (DAC) Chang et al. (2017). We report the results by ex-
cerpting from the corresponding papers or by running their released code when available. Our five
algorithms FcDEC-DA, ConvDEC-DA, FcIDEC-DA, ConvIDEC-DA, and FcDCN-DA are both
included into comparison. We report the result by averaging over five trials for each algorithm on
each dataset.

Evaluation metrics: We evaluate all clustering methods with the following metrics: clustering
ACCuracy (ACC), Normalized Mutual Information (NMI). The larger value corresponds to the
better clustering performance.

4.2. Effectiveness of Data Augmentation

To validate the effectiveness of incorporating data augmentation, we compare the clustering per-
formances of algorithms with and without data augmentation. The results are shown in Table 2.
We can see that algorithms with “-DA” outperforms their counterparts (without “-DA”) by a large
margin. For example, the ACC and NMI of FcDEC-DA algorithm on MNIST-test and USPS in-
crease by almost 0.2, compared to FcDEC. Even on the difficult Fashion dataset, the improvement
is still observable. We observed that there are very limited variations regarding shifting and rotation
in Fashion dataset. This enlightens us that designing dataset specific data augmentation probably
further increases the clustering performance. But in practice, to explore the variations of a given
dataset is tedious. We’ll study this in future work.

We have also conducted ablation study to see the effect of data augmentation in different stages.
“Aug-ae” and “Aug-cluster” in Table 2 indicate whether to use data augmentation in the pretraining
and finetuning stage, respectively. As we can see, data augmentation in each stage can improve the
performance. So it can be applied on a single stage if it’s not convenient to apply on both stages.
One exception is FcDCN without Aug-ae and with Aug-cluster on MNIST-test dataset, where the
ACC drops dramatically. It may be due to that the loss function (11) fell into the degenerate solution.
But we can still conclude that data augmentation in both stages can favor the clustering task.

4.3. Comparison with State-of-the-art Methods

We also compare our DEC-DA algorithms with state-of-the-art clustering methods. As shown in Ta-
ble 3, shallow clustering algorithms like k-means, spectral clustering, and agglomerative clustering
perform worse than deep clustering algorithms in most cases. The algorithms using fully connected
networks (from DCN Yang et al. (2017) to VaDE Jiang et al. (2017)) are overpowered by that using
convolutional networks (from JULE Yang et al. (2016) to DAC Chang et al. (2017)). Our DEC-DA
algorithms achieve the best performances on all datasets. With data augmentation, the fully con-
nected variants can be comparable to the convolutional variants. Actually, except for FcDEC-DA on
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Table 3: Clustering performances of different algorithms in terms of ACC and NMI. All results of
baseline algorithms are reported by running their released code except the ones marked by
(∗) on top which are excerpted from the corresponding paper. The mark “–” denotes that
the result is unavailable from the paper or the code.

MNIST-full MNIST-test USPS Fashion
ACC NMI ACC NMI ACC NMI ACC NMI

k-means MacQueen (1967) 0.532 0.500 0.546 0.501 0.668 0.627 0.474 0.512
SC-Ncut Shi and Malik (2000) 0.656 0.731 0.660 0.704 0.649 0.794 0.508 0.575
SC-LS Chen and Cai (2011) 0.714 0.706 0.740 0.756 0.746 0.755 0.496 0.497
NMF-LP Cai et al. (2009) 0.471 0.452 0.479 0.467 0.652 0.693 0.434 0.425
AC-Zell Zhao and Tang (2008) 0.113 0.017 0.810 0.693 0.657 0.798 0.100 0.010
AC-GDL Zhang et al. (2012) 0.113 0.017 0.933 0.864 0.725 0.825 0.112 0.010
RCC Shah and Koltun (2017) – 0.893∗ – – – – – –
DCN Yang et al. (2017) 0.830∗ 0.810∗ 0.802 0.786 0.688 0.683 0.501 0.558
DEC Xie et al. (2016) 0.863 0.834 0.856 0.830 0.762 0.767 0.518 0.546
IDEC Guo et al. (2017) 0.881∗ 0.867∗ 0.846 0.802 0.761∗ 0.785∗ 529 0.557
CSC Peng et al. (2017) 0.872∗ 0.755∗ 0.865∗ 0.733∗ – – – –
VaDE Jiang et al. (2017) 0.945 0.876 0.287 0.287 0.566 0.512 0.578 0.630
JULE Yang et al. (2016) 0.964∗ 0.913∗ 0.961∗ 0.915∗ 0.950 0.913 0.563 0.608
DEPICT Dizaji et al. (2017) 0.965∗ 0.917∗ 0.963∗ 0.915∗ 0.899 0.906 0.392 0.392
DBC Li et al. (2017) 0.964∗ 0.917∗ – – – – – –
DAC Chang et al. (2017) 0.978∗ 0.935∗ – – – – – –
FcDEC-DA 0.985 0.959 0.979 0.945 0.980 0.945 0.577 0.652
ConvDEC-DA 0.985 0.960 0.983 0.958 0.987 0.962 0.586 0.636
FcIDEC-DA 0.986 0.962 0.981 0.950 0.984 0.954 0.580 0.652
ConvIDEC-DA 0.983 0.955 0.979 0.950 0.984 0.955 0.584 0.638
FcDCN-DA 0.986 0.962 0.961 0.920 0.969 0.929 0.580 0.650
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Figure 3: Sensitivity analysis for the transformations (rotation and shifting) used in data augmenta-
tion on MNIST-test.

Fashion and FcDCN-DA on MNIST-test in terms of ACC, all of DEC-DA algorithms outperform
the state-of-the-art methods by a large margin.

In Table 4, we report the running time of different algorithms. All experiments are performed
on a PC with Intel Core i7-6700 CPU @ 4.00GHz and a single NVIDIA GTX 1080 GPU. As it
shows, RCC Shah and Koltun (2017) is the most efficient algorithm, but the performance (NMI)
is inferior to ours (0.893 vs. 0.962 on MNIST-full). JULE Yang et al. (2016) and DEPICT Dizaji
et al. (2017) paid a lot of time to get good results. By contrast, our DEC-DA algorithms are quite
efficient to get the state-of-the-art clustering performance. By comparing algorithm X and X-DA
where X can be one of FcDEC, ConvDEC, FcIDEC, ConvIDEC, and FcDCN, the extra time spent
on data augmentation is acceptable. In fact, we can use multiprocessing carefully to perform data
augmentation in real time. So we believe the efficiency of our DEC-DA algorithms is not a problem.

4.4. Sensitivity Analysis

By regarding the transformations used for augmenting data as hyper-parameters, we can study the
sensitivity. In our experiment, only random rotation and shifting are used. We sample 0◦, 10◦, . . . , 60◦

for rotation, and 0, 1, . . . , 6 for shifting transformation. Then on each of the resulting 49 grids, we
run our FcDEC-DA algorithm on MNIST-test dataset twice. Due to limited space and computing
resource, we can not show the results of all DEC-DA algorithms on all datasets. The performance
in terms of NMI is reported in Figure 3. As can be seen, our FcDEC-DA outperforms the baseline
FcDEC (0.75) for a wide range. When shifting for up to 6 pixels, the performance of our algorithm
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Table 4: Running time of different algorithms on MNIST-full dataset. X(-DA) = t1(t2) means the
running time of algorithm X is t1 and X-DA is t2, where X can be FcDEC et.al.

Algorithm Time (s) Algorithm Time (s)
RCC 200 FcDEC(-DA) 600 (1,100)
IDEC 1,400 ConvDEC(-DA) 1,700 (2,100)
VaDE 3,000 FcIDEC(-DA) 700 (1,300)
JULE 20,000 ConvIDEC(-DA) 2,200 (2,500)

DEPICT 9,000 FcDCN(-DA) 550 (750)

drops dramatically. This is not a surprise because there will be a lot of information lost in this case.
In the range of [0◦, 40◦] for rotation and [1, 4] for shifting, our FcDEC-DA performs stably well.

5. Conclusion

In this paper, we proposed the framework of DEC-DA by incorporating data augmentation into deep
embedded clustering (DEC) algorithms. Our DEC-DA utilizes data augmentation in both pretrain-
ing and finetuning stages of DEC. Then we instantiated and implemented five DEC-DA algorithms.
By comparing with state-of-the-art clustering methods on four image datasets, our DEC-DA al-
gorithms achieved the best clustering performance. The results validate that incorporating data
augmentation can improve the clustering performance by a large margin. We will explore the effect
of data augmentation on other deep clustering algorithms.
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