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ABSTRACT Clustering is a fundamental problem in many data-driven application domains, and clustering
performance highly depends on the quality of data representation. Hence, linear or non-linear feature
transformations have been extensively used to learn a better data representation for clustering. In recent years,
a lot of works focused on using deep neural networks to learn a clustering-friendly representation, resulting
in a significant increase of clustering performance. In this paper, we give a systematic survey of clustering
with deep learning in views of architecture. Specifically, we first introduce the preliminary knowledge
for better understanding of this field. Then, a taxonomy of clustering with deep learning is proposed and
some representative methods are introduced. Finally, we propose some interesting future opportunities of

clustering with deep learning and give some conclusion remarks.

INDEX TERMS Clustering, deep learning, data representation, network architecture.

I. INTRODUCTION

Data clustering is a basic problem in many areas, such as
machine learning, pattern recognition, computer vision, data
compression. The goal of clustering is to categorize sim-
ilar data into one cluster based on some similarity mea-
sures (e.g., Euclidean distance). Although a large number of
data clustering methods have been proposed [1]-[5], conven-
tional clustering methods usually have poor performance on
high-dimensional data, due to the inefficiency of similarity
measures used in these methods. Furthermore, these meth-
ods generally suffer from high computational complexity on
large-scale datasets. For this reason, dimensionality reduc-
tion and feature transformation methods have been exten-
sively studied to map the raw data into a new feature space,
where the generated data are easier to be separated by exist-
ing classifiers. Generally speaking, existing data transfor-
mation methods include linear transformation like Principal
component analysis (PCA) [6] and non-linear transforma-
tion such as kernel methods [7] and spectral methods [8].
Nevertheless, a highly complex latent structure of data is still
challenging the effectiveness of existing clustering methods.
Owing to the development of deep learning [9], deep neural
networks (DNNs) can be used to transform the data into
more clustering-friendly representations due to its inherent

property of highly non-linear transformation. For the sim-
plicity of description, we call clustering methods with deep
learning as deep clustering' in this paper.

Basically, previous work mainly focuses on feature trans-
formation or clustering independently. Data are usually
mapped into a feature space and then directly fed into a
clustering algorithm. In recent years, deep embedding clus-
tering (DEC) [11] was proposed and followed by other novel
methods [12]-[18], making deep clustering become a popular
research field. Recently, an overview of deep clustering was
proposed in [19] to review most remarkable algorithms in this
field. Specifically, it presented some key elements of deep
clustering and introduce related methods. However, this paper
mainly focuses on methods based on autoencoder [20], and it
was incapable of generalizing many other important methods,
e.g., clustering based on deep generative model. What is
worse, some up-to-date progress is also missing. Therefore,
itis meaningful to conduct a more systematic survey covering
the advanced methods in deep clustering.

Classical clustering methods are usually categorized as
partition-based methods [21], density-based methods [22],

IThe concept of “deep clustering” was firstly introduced in a deep learn-
ing framework for acoustic source separation [10], and gradually became
popular among general clustering tasks.
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hierarchical methods [23] and so on. However, since the
essence of deep clustering is to learning a clustering-oriented
representation, it is not suitable to classify methods according
to the clustering loss, instead, we should focus on the network
architecture used for clustering. In this paper, we make a sur-
vey of deep clustering from the perspective of network archi-
tecture. The first category uses the autoencoder (AE) to obtain
a feasible feature space. An autoencoder network provides
a non-linear mapping function through learning an encoder
and a decoder, where the encoder is a mapping function to be
trained, and the decoder is required to be capable to recon-
struct the original data from those features generated by the
encoder. The second category is based on feed-forward net-
works trained only by specific clustering loss, thus we refer to
this type of DNN as Clustering DNN (CDNN). The network
architecture of this category can be very deep and networks
pre-trained on large-scale image datasets can further boost
its clustering performance. The third and fourth categories
are based on Generative Adversarial Network (GAN) [24]
and Variational Autoencoder (VAE) [25] respectively, which
are the most popular deep generative models in recent years.
They can not only perform clustering task, but also can
generate new samples from the obtained clusters. To be more
detailed, we present a taxonomy of existing deep clustering
methods based on the network architecture. We introduce
the representative deep clustering methods and compare the
advantages and disadvantages of different architectures and
methods. Finally, some directions are suggested for future
development of this field.

The rest of this paper is organized as follows: Section II
reviews some preliminaries of deep clustering. Section III
presents a taxonomy of existing deep clustering algo-
rithms and introduces some representative methods. Finally,
Section IV provides some notable trends of deep clustering
and gives conclusion remarks.

Il. PRELIMINARIES

In this section, we introduce some preliminary knowledge of
deep clustering. It includes the related network architectures
for feature representation, loss functions of standard cluster-
ing methods, and the performance evaluation metrics for deep
clustering.

A. NEURAL NETWORK ARCHITECTURE

FOR DEEP CLUSTERING

In this part, we introduce some neural network architectures,
which have been extensively used to transform inputs to a new
feature representation.

1) FEEDFORWARD FULLY-CONNECTED NEURAL NETWORK

A fully-connected network (FCN) consists of multiple layers
of neurons, each neuron is connected to every neuron in the
previous layer, and each connection has its own weight. The
FCN is also known as multi-layer perceptron (MLP). It is
a totally general purpose connection pattern and makes no
assumptions about the features in the data. It is usually used
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in supervised learning when labels are provided. However,
for clustering, a good initialization of parameters of network
is necessary because a naive FC network tends to obtain a
trivial solution when all data points are simply mapped to
tight clusters, which will lead to a small value of clustering
loss, but be far from being desired [13].

2) FEEDFORWARD CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks (CNNs) [26] were inspired by
biological process, in which the connectivity pattern between
neurons is inspired by the organization of the animal visual
cortex. Likewise, each neuron in a convolutional layer is
only connected to a few nearby neurons in the previous
layer, and the same set of weights is used for every neuron.
It is widely applied to image datasets when locality and
shift-invariance of feature extraction are required. It can be
trained with a specific clustering loss directly without any
requirements on initialization, and a good initialization would
significantly boost the clustering performance. To the best
of our knowledge, no theoretical explanation is given in any
existing papers, but extensive work shows its feasibility for
clustering.

3) DEEP BELIEF NETWORK

Deep Belief Networks (DBNs) [27] are generative graphical
models which learn to extract a deep hierarchical represen-
tation of the input data. A DBN is composed of several
stacked Restricted Boltzmann machines (RBMs) [28]. The
greedy layer-wise unsupervised training is applied to DBNs
with RBMs as the building blocks for each layer. Then, all
(or part) of the parameters of DBN are fine-tuned with respect
to certain criterion (loss function), e.g., a proxy for the DBN
log-likelihood, a supervised training criterion, or a clustering
loss.

4) AUTOENCODER

Autoencoder (AE) is one of the most significant algorithms in
unsupervised representation learning. It is a powerful method
to train a mapping function, which ensures the minimum
reconstruction error between coder layer and data layer. Since
the hidden layer usually has smaller dimensionality than
the data layer, it can help find the most salient features of
data. Although autoencoder is mostly applied to find a better
initialization for parameters in supervised learning, it is also
natural to combine it with unsupervised clustering. More
details and formulations will be introduced in Section III-A.

5) GAN & VAE

Generative Adversarial Network (GAN) and Variational
Autoencoder (VAE) are the most powerful frameworks for
deep generative learning. GAN aims to achieve an equilib-
rium between a generator and a discriminator, while VAE
attempts to maximizing a lower bound of the data log-
likelihood. A series of model extensions have been developed
for both GAN and VAE. Moreover, they have also been
applied to handle clustering tasks. The details of the two
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models will be elaborated in Section III-C and Section III-D,
respectively.

B. LOSS FUNCTIONS RELATED TO CLUSTERING

This part introduces some clustering loss functions, which
guides the networks to learn clustering-friendly represen-
tations. Generally, there are two kinds of clustering loss.
We name them as principal clustering loss and auxiliary

clustering loss.
« Principal Clustering Loss: This category of clustering

loss functions contain the cluster centroids and cluster
assignments of samples. In other words, after the train-
ing of network guided by the clustering loss, the clusters
can be obtained directly. It includes k-means loss [13],
cluster assignment hardening loss [11], agglomerative
clustering loss [29], nonparametric maximum margin
clustering [30] and so on.

o Auxiliary Clustering Loss: The second category solely
plays the role of guiding the network to learn a more
feasible representation for clustering, but cannot out-
put clusters straightforwardly. It means deep clustering
methods with merely auxiliary clustering loss require
to run a clustering method after the training of net-
work to obtain the clusters. There are many auxil-
iary clustering losses used in deep clustering, such as
locality-preserving loss [31], which enforces the net-
work to preserve the local property of data embedding;
group sparsity loss [31], which exploits block diago-
nal similarity matrix for representation learning; sparse
subspace clustering loss [32], which aims at learning a
sparse code of data.

C. PERFORMANCE EVALUATION METRICS

FOR DEEP CLUSTERING

Two standard unsupervised evaluation metrics are exten-
sively used in many deep clustering papers. For all algo-
rithms, the number of clusters are set to the number of
ground-truth categories. The first metric is unsupervised clus-
tering accuracy (ACC):

it Hyi = m(cp)
n

where y; is the ground-truth label, ¢; is the cluster assignment
generated by the algorithm, and m is a mapping function
which ranges over all possible one-to-one mappings between
assignments and labels. It is obvious that this metric finds the
best matching between cluster assignments from a clustering
method and the ground truth. The optimal mapping function
can be efficiently computed by Hungarian algorithm [33].

The second one is Normalized Mutual Information
(NMI) [34]:

ACC = max
m

1(Y,C)
IHY) +H(O)]

where Y denotes the ground-truth labels, C denotes the
clusters labels, I is the mutual information metric and H is
entropy.

NMI(Y,C) =

VOLUME 6, 2018

IIl. TAXONOMY OF DEEP CLUSTERING

Deep clustering is a family of clustering methods that adopt
deep neural networks to learn clustering-friendly representa-
tions. The loss function (optimizing objective) of deep clus-
tering methods are typically composed of two parts: network
loss L, and clustering loss L., thus the loss function can be
formulated as follows:

L=ALy+ (1 — ML (1

where A € [0, 1] is a hype-parameter to balance L, and L..
The network loss L, is used to learn feasible features and
avoid trivial solutions, and the clustering loss L. encourages
the feature points to form groups or become more discrim-
inative. The network loss can be the reconstruction loss of
an autoencoder (AE), the variational loss of a variational
encoder (VAE) or the adversarial loss of a generative adver-
sarial network (GAN). As described in Section II-B, the clus-
tering loss can be k-means loss, agglomerative clustering
loss, locality-preserving loss and so on. For deep clustering
methods based on AE network, the network loss is essen-
tial. But some other work designs a specific clustering loss
to guide the optimization of networks, in which case the
network loss can be removed. As mentioned in Section I,
we refer this type of networks trained only by L. as clus-
tering DNN (CDNN). For GAN-based or VAE-based deep
clustering, the network loss and the clustering loss are usually
incorporated together. In this section, from the perspective of
DNN architecture, we divide deep clustering algorithms into
four categories: AE-based, CDNN-based, VAE-based, and
GAN-based deep clustering. Characteristics of each category
are revealed and related algorithms are introduced. Some
notations frequently used in the paper and their meanings
are presented in Table 1. The components of representative
algorithms are illutrated in Table 2 and their contributions are
described briefly in Table 3.

A. AE-BASED DEEP CLUSTERING

Autoencoder is a kind of neural network designed for unsu-
pervised data representation. It aims at minimizing the recon-
struction loss. An autoencoder may be viewed as consisting
of two parts: an encoder function & = fg(x) which maps
original data x into a latent representation k, and a decoder
that produces a reconstruction r = gg(h). The reconstructed
representation r is required to be as similar to x as possible.
Note that both encoder and decoder can be constructed by
fully-connected neural network or convolutional neural net-
work. When the distance measure of the two variables is mean
square error, given a set of data samples {x;}!"_,, its optimizing
objective is formulated as follows:

. 1
minLyec = min - dolxi—golfse 7. @)
’ i=1

where ¢ and 6 denote the parameters of encoder and
decoder respectively. Many variants of autoencoder have
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TABLE 1. Notations and their meanings.

Notations | Meanings

Ly the network loss

L¢ the clustering loss

Lyec the reconstruction loss (a specific type of network loss)
A the hype-parameter to balance L, and L.

x the vector of an original data sample

z the vector of the embedding representation of @, or the prior vector for GAN
c the obtained class label of sample x

i the counter variable

Il the 2-norm of a vector

fo() the encoder part of the autoencoder

g0(+) the decoder part of the autoencoder

E the expectation

Cat(-) the categorical distribution

N() multivariate Gaussian distribution

B(-) multivariate Bernoulli distrubution

7 the mean of the Gaussian distribution

o the variance of the Gaussian distribution

G(v) the generative network of GAN

D(+) the discriminative network of GAN

been proposed and applied to deep clustering. The perfor-
mance of autoencoder can be improved from the following
perspectives: (1)

1) Architecture: The original autoencoder is comprised
of multiple layer perceptions. For the sake of handling
data with spatial invariance, e.g., image data, convo-
lutional and pooling layers can be used to construct a
convolutional autoencoder (CAE).

2) Robustness: To avoid overfitting and to improve
robustness, it is natural to add noise to the input.
Denoising autoencoder [35] attempts to reconstruct x
from X, which is a corrupted version of x through some
form of noise. Additionally, noise can also be added to
the inputs of each layer [14].

3) Restrictions on latent features: Under-complete
autoencoder constrains the dimension of latent coder
z lower than that of input x, enforcing the encoder to
extract the most salient features from original space.
Other restrictions can also be adopted, e.g., sparse
autoencoder [36] imposes a sparsity constraint on
latent coder to obtain a sparse representation.

4) Reconstruction loss: Commonly the reconstruction
loss of an autoencoder consists of only the discrepancy
between input and output layer, but the reconstruction
losses of all layers can also be optimized jointly [14].

The optimizing objective of AE-based deep clustering is

thus formulated as follows:

L = ALpec + (1 — AL, (3)

The reconstruction loss enforce the network to learn a fea-
sible representation and avoid trivial solutions. The general
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architecture of AE-based deep clustering algorithms is illus-
trated in Figure 1, and some representative methods are intro-
duced as follows:
« Deep Clustering Network (DCN):
DCN [13] is one of the most remarkable methods in this
field, which combines autoencoder with the k-means
algorithm. In the first step, it pre-trains an autoen-
coder. Then, it jointly optimizes the reconstruction loss
and k-means loss. Since k-means uses discrete cluster
assignments, the method requires an alternative opti-
mization algorithm. The objective of DCN is simple
compared with other methods and the computational
complexity is relatively low.
+ Deep Embedding Network (DEN):
DEN [31] proposes a deep embedding network to extract
effective representations for clustering. It first utilizes
a deep autoencoder to learn reduced representation
from the raw data. Secondly, in order to preserve the
local structure property of the original data, a locality-
preserving constraint is applied. Furthermore, it also
incorporates a group sparsity constraint to diagonalize
the affinity of representations. Together with the recon-
struction loss, the three losses are jointly optimized to
fine-tune the network for a clustering-oriented repre-
sentation. The locality-preserving and group sparsity
constraints serve as the auxiliary clustering loss (see
Section II-B), thus, as the last step, k-means is required
to cluster the learned representations.
« Deep Subspace Clustering Networks (DSC-Nets):
DSC-Nets [37] introduces a novel autoencoder archi-
tecture to learn an explicit non-linear mapping that is
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TABLE 2. Comparison of algorithms based on network architecture and loss function.

Network Clustering loss
Categories | Algorithms ¢ w.or Network loss }19 ‘ermg 058 —
Architecture Principal Auxiliary
structi
DCN AE rECOSHUCHON 1 1 means loss N
loss
reconstruction 1) locality-preserving constraint
DEN AE N i )
AE loss 2) group sparsity constraint
tructi
DSC-Nets CAE ;’econs ruction N self-expressiveness term
0ss8
tructi
DMC AE Iecons ruetion proximity penalty term locality-preserving loss
0s8
CAE reconstruction .
DEPICT . unsupervised cross entropy loss N
(Denoising) loss
structi
DCC AE/CAE ;’econs ruction robust continuous clustering loss N
0ss8
nonparametric maximum margin
DNC RBM N . N
clustering loss
DEC FCN N cluster assignment hardening loss N
CDNN DBC CNN N cluster assignment hardening loss N
CCNN CNN N k-means N
IMSAT FCN N 1) regularized inform?t%on maximization, N
2) self-augmented training loss
JULE CNN N agglomerative clustering N
DAC! CNN N pairwise-classification loss N
VAE VaDE VAE variational lower bound on the marginal likelihood, with a GMM priori
GMVAE VAE variational lower bound on the marginal likelihood, with a GMM priori
2 Adversarial reconstruction 1) GMM likelihood,
DAC o N
GAN autoencoder | loss 2) adversarial objective
CatGAN GAN adversarial objective with a multi-classes priori
InfoGAN GAN adversarial objective with a multi-classes priori

! Deep Adaptive Clustering
2 Deep Adversarial Clustering

TABLE 3. Main contributions of the representative algorithms.

Categories | Algorithms | Main contributions to clustering
DCN perform k-means clustering and feature learning simultaneously, simple but effective
DEN learn a clustering-friendly representation
AE DSC-Nets improve the classical subspace clustering by AE
DMC improve the classical multi-manifold clustering by AE
DEPICT computational efficient, robust, perform well on image datasets
DCC avoid alternative optimization, require no prior knowledge of cluster number
DNC improve the classical NMMC clustering by DBN
DEC the first well-known deep clustering method, making this field popular
DBC improve DEC using CNN
CDNN CCNN computational efficient, deal with large-scale image datasets
IMSAT introduce self-augment training to deep clustering
JULE perform well on image datasets, but have high computational and memory cost
DAC well-designed clustering loss, achieve the-state-of-art performance on several datasets
VAE VaDE combine VAE with clustering
GMVAE combine VAE with clustering
DAC combine AAE with clusteirng
GAN CatGAN combine GAN with clustering
InfoGAN learn disentangled representations
friendly to subspace clustering [38]. The key contribu- encoder and the decoder. This layer aims at encoding
tion is introducing a novel self-expressive layer, which the self-expressiveness property [39] [40] of data drawn
is a fully connected layer without bias and non-linear from a union of subspaces. Mathematically, its optimiz-
activation and inserted to the junction between the ing objective is a subspace clustering loss combined
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FIGURE 1. Architecture of clustering based on aut

with a reconstruction loss. Although it has superior
performance on several small-scale datasets, it is really
memory-consuming and time-consuming and thus can
not be applied to large-scale datasets. The reason is that
its parameter number is O(n?) for n samples, and it can
only be optimized by gradient descent.

o Deep Multi-Manifold Clustering (DMC):

DMC [41] is deep learning based framework for
multi-manifold clustering (MMC). It optimizes a joint
loss function comprised of two parts: the locality pre-
serving objective and the clustering-oriented objec-
tive. The first part makes the learned representations
meaningful and embedded into their intrinsic mani-
fold. It includes the autoencoder reconstruction loss
and locality preserving loss. The second part penalizes
representations based on their proximity to each clus-
ter centroids, making the representation cluster-friendly
and discriminative. Experimental results show that
DMC has a better performance than the state-of-the-art
multi-manifold clustering methods.

o Deep Embedded Regularized Clustering (DEPICT):
DEPICT [14] is a sophisticated method consisting of
multiple striking tricks. It consists of a softmax layer
stacked on top of a multi-layer convolutional autoen-
coder. It minimizes a relative entropy loss function
with a regularization term for clustering. The regular-
ization term encourages balanced cluster assignments
and avoids allocating clusters to outlier samples. Fur-
thermore, the reconstruction loss of autoencoder is also
employed to prevent corrupted feature representation.
Note that each layer in both encoder and decoder con-
tributes to the reconstruction loss, rather than only
the input and output layer. Another highlight of this
method is that it employs a noisy encoder to enhance the
robustness of the algorithm. Experimental results show
that DEPICT achieves superior clustering performance
while having a high computational efficiency.
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oder. The network is trained by both clustering loss and reconstruction loss.

+ Deep Continuous Clustering (DCC):

DCC [42] is also an AE-based deep clustering algo-
rithm. It aims at solving two limitations of deep clus-
tering. Since most deep clustering algorithms are based
on classical center-based, divergence-based or hierar-
chical clustering formulations, they have some inher-
ent limitations. For one thing, they require setting the
number of clusters in priori. For another, the opti-
mization procedures of these methods involve discrete
reconfigurations of the objective, which require updat-
ing the clustering parameters and network parameters
alternatively. DCC is rooted in Robust Continu-
ous Clustering (RCC) [43], a formulation having a
clear continuous objective and no prior knowledge
of clusters number. Similar to many other methods,
the representation learning and clustering is optimized
jointly.

B. CDNN-BASED DEEP CLUSTERING

CDNN-based algorithms only use the clustering loss to train
the network, where the network can be FCN, CNN or DBN.
The optimizing objective of CDNN-based algorithms can be
formulated as follows:

L=1L, 4

Without the reconstruction loss, CDNN-based algorithms
suffer from the risk of obtaining corrupted feature space,
when all data points are simply mapped to tight clusters,
resulting in a small value of clustering loss but meaning-
less. Consequently, the clustering loss should be designed
carefully and network initialization is important for certain
clustering loss. For this reason, we divide CDNN-based
deep clustering algorithms into three categories according
to the ways of network initialization, i.e., unsupervised
pre-trained, supervised pre-trained and randomly initialized
(non-pre-trained).
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FIGURE 2. Architecture of CDNN-based deep clustering algorithms. The network is only adjusted by the clustering loss. The network

architecture can be FCN, CNN, DBN and so on.

1) UNSUPERVISED PRE-TRAINED NETWORK
RBMs and autoencoders have been applied to CDNN-based
clustering. These algorithms firstly train a RBM or an autoen-
coder in an unsupervised manner, then fine-tune the network
(only encoder part for the autoencoder) by the clustering loss.
Several representative algorithms are introduced as below.
o Deep Nonparametric Clustering (DNC):
DNC [30] leverages unsupervised feature learning with
DBN for clustering analysis. It first trains a DBN to
map original training data into the embedding codes.
Then, it runs the nonparametric maximum margin clus-
tering (NMMC) algorithm to obtain the number of clus-
ters and labels for all training data. After that, it takes
the fine-tuning process to refine the parameters of the
top layer of the DBN. The experimental results show
advantages over classical clustering algorithms.
o Deep Embedded Clustering (DEC):
DEC [11] is one of the most representative methods of
deep clustering and attracts lots of attention into this
field. It uses autoencoder as the network architecture
and uses cluster assignment hardening loss as a reg-
ularization. It first trains an autoencoder by using the
reconstruction loss and then drops the decoder part. The
features extracted by the encoder network serve as the
input of clustering module. After that, the network is
fine-tuned using the cluster assignment hardening loss.
Meanwhile, the clusters are iteratively refined by min-
imizing the KL-divergence between the distribution of
soft labels and the auxiliary target distribution. As a
result, the algorithm obtains a good result and become
a reference to compare the performances of new deep
clustering algorithms.
« Discriminatively Boosted Clustering (DBC):
DBC [12] has almost the same architecture with DEC
and the only improvement is that it use convolutional
autoencoder. In other words, it also first pre-trains
an autoencoder and then uses the cluster assignment
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hardening loss to fine-tune the network, along with
refining the clustering parameters. It outperforms DEC
on image datasets on account of the use of the convolu-
tional network.

2) SUPERVISED PRE-TRAINED NETWORK

Although unsupervised pre-training provides a better initial-
ization of networks, it is still challenging to extract feasible
features from complex image data. Guérin et al. [44] conduct
extensive experiments by testing the performance of combi-
nations of different popular CNN architectures pre-trained on
ImageNet [45] and different classical clustering algorithms.
The experimental results show that feature extracted from
deep CNN trained on large and diverse labeled datasets, com-
bined with classical clustering algorithms, can outperform
the state-of-the-art image clustering methods. To this effect,
when the clustering objective is complex image data, it is
natural to make use of the most popular network architectures
like VGG [46], ResNet [47] or Inception [48] models, which
are pre-trained on large-scale image datasets like ImageNet,
to speed up the convergence of iterations and to boost the
clustering quality. The most remarkable method of this type
is introduced as follows:

o Clustering Convolutional Neural Network (CCNN):
CCNN [17] is an efficient and reliable deep cluster-
ing algorithm which can deal with large-scale image
datasets. It proposes a CNN-based framework to solve
clustering and representation learning iteratively. It first
randomly picks k samples and uses an initial model
pre-trained on the ImageNet dataset to extract their
features as the initial cluster centroids. In each step,
mini-batch k-means is performed to update assignments
of samples and cluster centroids, while stochastic gra-
dient descent is used to update the parameters of
the proposed CNN. The mini-batch k-means signifi-
cantly reduces computation and memory costs, enabling
CCNN to be adapted to large-scale datasets. Moreover, it
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also includes a novel iterative centroid updating method
that avoids drift error induced by the feature inconsis-
tency between two successive iterations. At the same
time, only top-k,,, samples with the smallest distances to
their corresponding centroids are chosen to update the
network parameters, in order to enhance the reliability
of updates. All these techniques improve the clustering
performance. To the best of our knowledge, it is the only
deep clustering method which can deal with the task of
clustering millions of images.

3) NON-PRE-TRAINED NETWORK

Despite the fact that a pre-trained network can significantly

boost the clustering performance, under the guidance of

a well-designed clustering loss, the networks can also be

trained to extract discriminative features.

o Information Maximizing Self-Augmented Training
(IMSAT):
IMSAT [49] is an unsupervised discrete representation
learning algorithm, the task of which is to obtain a
function mapping data into discrete representations.
Clustering is a special case of the task. It com-
bines FCN and regularized Information Maximization
(RIM) [50], which learns a probabilistic classifier such
that mutual information between inputs and clus-
ter assignments is maximized. Besides, the com-
plexity of the classifier is regularized. At the same
time, an flexible and useful regularization objective
termed Self-Augmented Training (SAT) is proposed
to impose the intended invariance on the data repre-
sentations. This data augmentation technique signifi-
cantly improves the performance of standard deep RIM.
IMSAT shows state-of-the-art results on MNIST and
REUTERS datasets.
« Joint Unsupervised Learning (JULE):

JULE [16] is proposed to learn feature representa-
tions and cluster images jointly. A convolutional neu-
ral network is used for representation learning and a
hierarchical clustering (to be specific, agglomerative
clustering) is used for clustering. It optimizes the objec-
tive iteratively in a recurrent process. Hierarchical image
clustering is performed in the forward pass while feature
representation is learned in the backward pass. In the
forward pass, the representations of images are regarded
as initial samples, and then label information is gen-
erated from an undirected affinity matrix based on the
deep representations of images. After that, two clusters
are merged according to a predefined loss metric. In the
backward pass, the network parameters are iteratively
updated towards obtaining a better feature representa-
tion by optimizing the already merged clusters. In exper-
iments, the method shows excellent results on image
datasets and indicates that the learned representations
can be transferred across different datasets. Neverthe-
less, the computational cost and memory complexity are
extremely high when datasets is large as it requires to
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construct an undirected affinity matrix. What is worse,
the cost can hardly be optimized since it is a dense
matrix.
« Deep Adaptive Image Clustering (DAC):

DAC [51] is a single-stage convolutional-network-based
method to cluster images. The method is motivated from
a basic assumption that the relationship between pair-
wise images is binary and its optimizing objective is
the binary pairwise-classification problem. The images
are represented by label features extracted by a con-
volutional neural network, and the pairwise similari-
ties are measured by the cosine distance between label
features. Furthermore, DAC introduces a constraint to
make the learned label features tend to be one-hot vec-
tors. Moreover, since the ground-truth similarities are
unknown, it adopts an adaptive learning algorithm [52],
an alternating iterative method to optimize the model.
In each iteration, pairwise images with the estimated
similarities are selected based on the fixed network, then
the network is trained by the selected labeled samples.
DAC converges when all instances are used for training
and the objective can not be improved further. Finally,
images are clustered according to the largest response
of label features. DAC achieves superior performance on
five challenging datasets.

C. VAE-BASED DEEP CLUSTERING

AE-based and CDNN-based deep clustering have made
impressive improvements compared to classical clustering
method. However, they are designed specifically for clus-
tering and fail to uncover the real underlying structure of
data, which prevent them from being extended to other
tasks beyond clustering, e.g., generating samples. Worse
still, the assumptions underlying the dimensionality reduction
techniques are generally independent of the assumptions of
the clustering techniques, thus there is no theoretical guar-
antee that the network would learn feasible representations.
In recent years, Variational Autoencoder (VAE), a kind of
deep generative model, has attracted extensive attention and
motivated a large number of variants. In this section, we intro-
duce the deep clustering algorithms based on VAE.

VAE can be considered as a generative variant of AE, as it
enforces the latent code of AE to follow a predefined dis-
tribution. VAE combines variational bayesian methods with
the flexibility and scalability of neural networks. It intro-
duces neural networks to fit the conditional posterior and thus
can optimize the variational inference objective via stochas-
tic gradient descent [53] and standard backpropagation [54].
To be specific, it uses the reparameterization of the varia-
tional lower bound to yield a simple differentiable unbiased
estimator of the lower bound. This estimator can be used for
efficient approximate posterior inference in almost any model
with continuous latent variables. Mathematically, it aims at
minimizing the (variational) lower bound on the marginal
likelihood of the dataset X = {x(i)}ﬁ\’: |» its objective function

VOLUME 6, 2018



E. Min et al.: Survey of Clustering With Deep Learning: From the Perspective of Network Architecture

IEEE Access

latent features

inputs

— X, — — > Z

}

KL

Divergence

Encoder T

£

\ reconstruction
— — —> X i

Decoder

ge(')

GMM

FIGURE 3. Architecture of VAE-based deep clustering algorithms. They impose a GMM priori over the latent code.

can be formulated as follows:

N
LO.¢:X) = Y (—Drr(qp@x™) || p2))
+ By, ey llogpa@ V1)) (5)

p(z) is the priori over the latent variables. q¢(z|x(i)) is the
variational approximation to the intractable true posterior
pelx?) and py(x?|z) is the likelihood function. From a
coding theory perspective, the unobservable variables z can
be interpreted as a latent representation, thus gs(zlx) is a
probabilistic encoder and py(x|z) is a probabilistic decoder.
In summary, the most significant difference between standard
autoencoder and VAE is that VAE impose a probabilistic
prior distribution over the latent representation z. In regular
VAEs, the prior distribution p(z) is commonly an isotropic
Gaussian. But in the context of clustering, we should choose a
distribution which can describe the cluster structure. As illus-
trated in Figure 3, existing algorithms choose a mixture of
Gaussians as a priori. In other words, they assume that the
observed data is generated from a mixture of Gaussians, infer-
ring the class of a data point is equivalent to inferring which
mode of the latent distribution the data point was generated
from. After maximizing the evidence lower bound, the cluster
assignment can be inferred by the learned GMM model. This
kind of algorithms are able to generate images in addition
to outputting clustering results, but they usually suffer from
high computational complexity. Two related algorithms are
presented as follows.
« Variational Deep Embedding (VaDE):

VaDE [15] consider the generative model p(x,z,c) =

p(x|2)pz|c)p(c),In this model, an observed sample x is

generated by the following process:

¢ ~ Cat(1/K),z ~ N (i, a2I)
x ~ N(p(), 0 2@)I) or B(p,(2))
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where Cat(-) is the categorical distribution, K is the
predefined number of clusters, u and o are the mean and
the variance of the Gaussian distribution correspond-
ing to cluster ¢ or parameterized by a given vector.
N() and B(-) are multivariate Gaussian distribution
and Bernoulli distribution parameterized by u, ¢ and
respectively. A VaDE instance is tuned to maximize the
likelihood of the given samples. The log-likelihood of
VaDE can be formulated as:

logp(x)
= log/Zp(x, z,0)dz
z ¢

px,z,c)
q(, clx)

> Eq(z,clx) [log ]

= Lgrpo(x)
= Ey ciwllogp(x|z)] — Dkr(q(z, c|x)l|p(z, ¢)) (6)

where Lgrpo is the evidence lower bound (ELBO),
q(z, c|x) is the variational posterior to approximate the
true posterior p(z, c|x). The first term in Equation 6 is
the reconstruction loss (network loss L,), and the second
term, which is the Kullback-Leibler divergence from
the Mixture-of-Gaussians (MoG) prior p(z,c) to the
variational posterior ¢(z, c|x), can be consider as the
clustering loss L.. After the maximization of the lower
bound, the cluster assignments can be inferred directly
from the MoG prior.

Gaussian Mixture VAE (GMVAE):

GMVAE [55] proposes a similar formulation. It consid-
ers the generative model p(x, z, r, ¢) = p(x|z)pg(zlc, n)p
(n)p(c). In this model, an observed sample x is generated
as the following process:

¢ ~ Cat(1/K),n ~ N(0, )
2~ N(pe(m), o2(n)
x ~ N, (2), 0x@)I) or B(p,(2))
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FIGURE 4. GAN-based deep clustering. (a) DAC. (b) CatGAN. (c) InfoGAN.

Note that GMVAE is a little complex than VaDE and has
worse results empirically.

D. GAN-BASED DEEP CLUSTERING

Then Generative Adversarial Network (GAN) is another pop-
ular deep generative model in recent years. The (GAN) frame-
work establishes a min-max adversarial game between two
neural networks: a generative network, G, and a discrimina-
tive network, D. The generative network tries to map a sample
z from a prior distribution p(z) to the data space, while the
discriminative network tries to compute the probability that a
input is a real sample from the data distribution, rather than
a sample generated by the generative network. The objective
to this game can be formulated as follows:

mGin max B~ paara [102D )] + Ezppy[log(1 — D(G(2)))]
7

The generator G and the discriminator D can be optimized
alternatively using SGD. The idea of GAN is interesting as
it provides an adversarial solution to match the distribution
of data or its representations with an arbitrary prior distri-
bution. In recent years, many GAN-based algorithms have
been proposed for clustering, some of which are specific to
clustering task, while others just take clustering as a special
case. GAN-based deep clustering algorithms have the same
problems of GAN, e.g., hard to converge and mode collapse.
The noticeable works are presented as follows:
« Deep Adversarial Clustering (DAC):
DAC [56] is a generative model specific to clustering.
It applies the adversarial autoencoder (AAE) [57] to
clustering. AAE is similar to VAE as VAE uses a KL
divergence penalty to impose a prior distribution on the
latent representation, while AAE uses an adversarial
training procedure to match the aggregated posterior
of the latent representation with the prior distribution.
Inspired by the success of VaDE, Harchaoui et al. [56]
match the aggregated posterior of the latent representa-
tion with a Gaussian Mixture Distribution. The network
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architecture is illustrated in Figure 4(a). Its optimizing
objective is comprised of three terms: the traditional
auto-encoder reconstruction objective, the Gaussian
mixture model likelihood, and the adversarial objective,
where the reconstruction objective can be considered
as the network loss, and the other two terms are the
clustering loss. Experiment in [57] illustrates that it has
a comparable result with VaDE on the MNIST dataset.
o Categorial Generative Adversarial Network
(CatGAN):
CatGAN [58] generalizes the GAN framework to mul-
tiple classes. As illustrated in Figure 4(b), it considers
the problem of unsupervisedly learning a discriminative
classifier D from dataset, which classifies the data points
into a priori chosen number of categories instead of
only two categories (fake or real). CatGAN introduces
a new two player game based on GAN framework:
Instead of requiring D to predict the probability of x
belonging to real dataset, it enforces D to classify all
data points into k classes, while being uncertain of class
assignments for samples generated by G. On the other
hand, it requires G to generate samples belonging to
precisely one out of k classes, instead of generating sam-
ples belonging to the dataset. Mathematically, the goal
of CatGAN is maximizing H [p(c|x, D)] and H [p(c|D)],
and minimizing H [p(c|G(z), D)], where H[-] denotes the
empirical entropy, x is the real sample, x is the random
noise, and c is the class label. The objective function of
the discriminator, which we refer to with Lp, and the
generator, which we refer to with L can be defined as
follows:

Lp = max Hx[p(c|D)] — Ex~x[H][p(c|x, D)]]
+ Eznpy [H [p(c]|G(2), D)]]
Lg = mGin —Hg[p(c|D)] + Ezpr)[H [p(c|G(z), D)]]

®)
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TABLE 4. Comparison of different categories of deep clustering algorithms.

. L. A Computational
Categories L. Ly Description Advantages Disadvantages
Complexity
. o . . 1) Introduce a hyper-parameter )
Yes Joint optimize an AE 1) Not obtain trivial solutions Clustering loss
AE-based DC Yes . to balance the two losses .
(AE loss) | and clustering parameters 2) Easy to implement o specific
2) Limited network depth
1) Have the risk of obtaining
Optimize the network 1) Simple and graceful objective | corrupted feature space Clustering loss
CDNN-based DC | Yes | No
only by clustering loss 2) Extended to large-scale tasks 2) Require well-designed specific
clustering loss
Impose a GMM priori 1) Capable to generate samples High-computional .
VAE-based DC Yes | Yes High
on VAE 2) Decent theoretical guarantee complexity
Impose a multi-class priori | 1) Capable to generate samples 1) Hard to converge .
GAN-based DC Yes | Yes High
on GAN 2) Flexible 2) Mode collapse

where X is the distribution of dataset. Empirical eval-
uation shows that CatGAN is superior to k-means and
RIM [50] on a “circles” dataset.

o Information Maximizing Generative Adversarial
Network (InfoGAN):
InfoGAN [59] is an unsupervised method that learns
disentangled representations, and it can also be used
for clustering. It can disentangle both discrete and con-
tinuous latent factors, scale to complicated datasets.
The idea of InfoGAN is maximizing the mutual
information [60] between a fixed small subset of the
GAN’s noise variables and the observation, which is rel-
atively straightforward but surprisingly effective. To be
specific, as illustrated in Figure 4(c), it decomposes
the input noise vector into two parts: incompressible
noise z and latent code ¢, so the form of the genera-
tor becomes G(z, ¢). To avoid trivial codes, it uses an
information-theoretic regularization to ensure that the
mutual information between latent codes ¢ and gen-
erator distribution G(z,c) should be high. The opti-
mizing objective of InfoGAN become the following
information-regularized minimax game:

m(i;n mDax Vi(D,G)=V(D, G)— Al(c; Gz,c) (9

where V(D,G) denotes the object of standard GAN, and
I(c; G(z, ¢)) is the information-theoretic regularization.
When choosing to model the latent codes with one cat-
egorical code having k values, and several continuous
codes, it has the function of clustering data points into
k clusters. Experiments in [59] shows that it can achieve
0.95 accuracy on the MNIST dataset.

E. SUMMARY OF DEEP CLUSTERING ALGORITHMS

In this part, we present an overall scope of deep clustering
algorithms. Specifically, we compare the four categories of
algorithms in terms of loss function, advantages, disadvan-
tages and computational complexity. as shown in Table 4.
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In regard to the loss function, apart from CDNN-based
algorithms, the other three categories of algorithms jointly
optimize both clustering loss L. and network loss L,. The
difference is that the network loss of AE-based algorithms
is explicitly reconstruction loss, while the two losses of
VAE-based and GAN-based algorithms are usually incorpo-
rated together.

AE-based DC algorithms are most common as autoen-
coder can be combined with almost all clustering algo-
rithms. The reconstruction loss of autoencoder ensures the
network learns a feasible representation and avoid obtaining
trivial solutions. However, due to the symmetry architec-
ture, the network depth is limited for computational fea-
sibility. Besides, the hyper-parameter to balance the two
losses requires extra fine-tuning. In contrast to AE-based DC
algorithms, CDNN-based DC algorithms only optimize the
clustering loss. Therefore, the depth of network is unlimited
and supervisedly pre-trained architectures can be used to
extract more discriminative features, thus they are capable
to cluster large-scale image datasets. However, without the
reconstruction loss, they have the risk of learning a corrupted
feature representation, thus the clustering loss should be well-
designed. VAE-based and GAN-based DC algorithms are
generative DC techniques, as they are capable to generate
samples from the finally obtained clusters. VAE-based algo-
rithms have a good theoretical guarantee because they mini-
mizes the variational lower bound on the marginal likelihood
of data, but it suffer from high-computational complexity.
GAN-based algorithms impose a multi-class priori on general
GAN framework. They are more flexible and diverse than
VAE-based ones. Some of them aim at learning interpretable
representations and just take clustering task as a specific case.
The shortcomings of GAN-based algorithms are similar to
GAN:s, e.g, mode collapse and converge slowly.

The computational complexity of deep clustering varies a
lot. For AE-based and CDNN-based algorithms, the com-
putational cost is highly related to the clustering loss. For
example, k-means loss results in a relatively low overhead
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while the cost of agglomerative clustering is extremely high.
At the same time, the network architectures also influence
the computational complexity significantly, as a deep CNN
requires a long time to train. For VAE and GAN, due to
the difficulty to optimize, they usually have a higher compu-
tational complexity than efficient methods in the AE-based
and CDNN-based categories, e.g., DEC, DCN, DEPICT and
SO on.

IV. FUTURE OPPORTUNITIES AND CONCLUSIONS
A. FUTURE OPPORTUNITIES OF DEEP CLUSTERING
Based on the aforementioned literature review and analysis,
we argue that the following perspectives of deep clustering
are worth being studied further:
1) Theoretical exploration
Although jointly optimizing networks and clustering
models significantly boost the clustering performance,
there is no theoretical analysis explaining why it works
and how to further improve the performance. There-
fore, it is meaningful to explore the theoretical guar-
antee of deep clustering, in order to guide further
researches in this area.
2) Other network architectures
Existing deep clustering algorithms mostly focus on
image datasets, while few attempts have been made
on sequential data, e.g., documents. To this effect, it is
recommended to explore the feasibility of combining
other network architectures with clustering, e.g., recur-
rent neural network [61].
3) Tricks in deep learning
It is viable to introduce some tricks or techniques used
in supervised deep learning to deep clustering, e.g. data
augmentation and specific regularizations. A concrete
example is augmenting data with noise to improve the
robustness of clustering methods.
4) Other clustering tasks
Combining deep neural networks with diverse cluster-
ing tasks, e.g. multi-task clustering, self-taught clus-
tering (transfer clustering) [62], is another interesting
research direction. To the best of our knowledge, these
tasks have not exploited the powerful non-linear trans-
formation of neural networks.

B. CONCLUSION REMARKS

As deep clustering is widely used in many practical appli-
cations for its powerful ability of feature extraction, it is
natural to combine clustering algorithms with deep learning
for better clustering results. In this paper, we give a systematic
survey of deep clustering, which is a popular research field
of clustering in recent years. A taxonomy of deep clustering
is proposed from the perspective of network architectures,
and the representative algorithms are presented in detail. The
taxonomy explicitly shows the characteristics, advantages
and disadvantages of different deep clustering algorithms.
Furthermore, we provide several interesting future directions
of deep clustering. We hope this work can serve as a valuable
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reference for researchers who are interested in both deep
learning and clustering.
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