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Abstract—Domain adaptation (DA) aims to eliminate the
difference between the distribution of labeled source domain
on which a classifier is trained and that of unlabeled or partly
labeled target domain to which the classifier is to be applied.
Compared with the semi-supervised domain adaptation where
some labeled data from target domain is utilized to help train
the classifier, the unsupervised domain adaptation where no
labels can be seen from the target domain is without doubt
more challenging. Most published approaches suffer from high
complexity of designment or implementation. In this paper, we
propose a simple method for unsupervised domain adaptation
which minimizes domain shift by projecting each instance from
source and target domains into a common feature space using a
linear kernel function. Our method is extremely simple without
hyper-parameters (it can be implemented in two lines of Matlab
code) but still outperforms the state-of-the-art domain adaptation
approaches on standard benchmark datasets.

I. INTRODUCTION

Traditional machine learning algorithms perform well only
when the training dataset and testing dataset share the same
distribution. However, this assumption can be challenged in
real world where the distribution of training data always differs
from that of testing data (see Fig. 1). Or when the labels of
instances in one domain are invisible or limited and we want to
train a machine learning model (e.g. a classifier) on sufficient
labeled data at hand but from a different domain, there will
exist the distribution difference. Numerous articles[1], [2],
[3] have proven that the test error of supervised methods
generally increases in proportion to the difference between
the distributions of training and testing samples. Addressing
domain shift is undoubtedly critical for successfully applying
machine learning methods in real world applications.

Many approaches have been developed to take care of do-
main shift, known as domain adaptation (DA) algorithms. But
most of them assume that some labeled examples in the target
domain are provided to learn the proper adapted model. Daumé
IIT [4] proposes a supervised domain adaptation approach
notable for its extreme simplicity: it merely augments the
features by copying the original feature, then trains a classifier
on the new features from both domains. The method is “frus-
tratingly easy” yet still effective. However, it cannot handle the
scenario where the target domain is unlabeled, which requires
more challenging unsupervised domain adaptation approaches.
While the published unsupervised domain adaptation methods
suffer from either complicated designment or unbearable time
complexity. The most recent “frustratingly easy”” unsupervised
domain adaptation is the Correlation Alignment (CORAL) [5].
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Fig. 1. Example for domain shift. The bags from domain 1 do not have
any background while those from domain 2 have complex background. The
classifier trained on one domain will suffer from performance degradation
when it is tested on the other domain

It minimizes the difference between distributions of source and
target features by aligning the second-order statistics, namely,
the covariance. But a hyper-parameter is required to guarantee
the stability of the algorithm.

In this paper, we propose a simple unsupervised domain
adaptation method inspired by feature augmentation strategy
[4]. Instead of directly copying the features, we first augment
the data matrix by mixing all instances from source and target
domains then use a linear kernel function to get the new
representation of each instance. That is to say, we take the
similarities between instance x; and all instances from mixed
domain (source + target) as the projected feature of x;. Our
method is simple and efficient as the only computation is
matrix multiplication or linear transformation. The source code
of our method can be publicly available'. Furthermore, the
proposed strategy has the potential to be extended to multi-
source domain adaptation scenarios.

The remaining of this paper is organized as follows. Section
II reviews notable domain adaptation solutions. Our proposed
unsupervised domain adaptation method is introduced in Sec-
tion III and experimental results are presented in Section IV.
We finish with conclusion in Section V.

Thttps://github.com/XifengGuo/Easy_DA_code.git



II. RELATED WORK

A variety of domain adaptation approaches have been
proposed in the literature, categorized into supervised, semi-
supervised and unsupervised domain adaptation.

Supervised domain adaptation techniques use the labeled
source data and labeled target data to minimize domain shift.
Note that unlabeled target data still may exist but remain
unused. Pan et al. [6] propose a new dimensionality reduction
method called maximum mean discrepancy embedding (M-
MDE) for domain adaptation,aiming to learn a shared latent
space where distance between distributions can be reduced
with the data variance preserved. The work in [1] investigates
domain adaptation by metric learning techniques, which learn
a transformation that minimizes the effect of domain induced
changes. The feature augmented method [4] is notable for
extremely simplicity. Given an instance x, it defines the
augmented feature X = (x; x; 0) for instance in source domain
and X = (x;0;x) for instance in target domain. Then a
classifier can be trained on the augmented features.

Semi-supervised domain adaptation methods assume that
some labels are available in target domain and unlabeled target
data is also explored to assist the adaptation. Duan et al. [7]
utilize the unlabeled target data to more precisely measure
the data distribution mismatch between the source and target
domains based on the maximum mean discrepancy. Method in
[8] develops a subspace co-regularized method for multilingual
text classification problem. It minimizes the training error on
the labeled data in each language meanwhile penalizes the
distance between the subspaces of the two languages of both
labeled and unlabeled documents.

While unsupervised domain adaptation approaches do not
use the labels but the structure of target samples to eliminate
domain shift. The re-weighting techniques [9], [10] for unsu-
pervised domain adaptation aim to minimize the distribution
difference by giving each instance from source domain a
weight. Recent state-of-the-art unsupervised approaches [11],
[12], [13], [14] choose to project the source and target distribu-
tions into a lower-dimensional manifold, and finding a trans-
formation that brings the subspaces closer together. Geodesic
method [11] finds a path along the subspace manifold and
at last finds a closed form linear map that projects source
points to target. Subspace alignment method [12] computes
the linear map that minimizes the Frobenius norm of the
difference between the subspaces (e.g. obtained by PCA) of
source and target domains. However, these approaches only
align the bases of the subspaces, not the distribution of the
projected data and require expensive computation for subspace
projection and hyper-parameter selection. Most recently, Sun
et al. [5] propose a simple unsupervised adaptation by aligning
the covariances of source and target domains but still require
a hyper-parameter to ensure the stability.

Our work belongs to the most challenging unsupervised
domain adaptation. It linearly projects the instances from
source and target domains to a shared feature space. The
proposed method is free of hyper-parameter and easy to

implement.

III. PROPOSED APPROACH FOR UNSUPERVISED DOMAIN
ADAPTATION

We present an extraordinarily simple unsupervised domain
adaptation method which projects source and target data into
a shared common feature space using a linear kernel function.
Then a SVM classifier is trained on the new representation
of source data and tested on projected target data. Especially,
when a linear kernel SVM classifier is applied we can derive
a simple but graceful kernel.

A. Notation and formulation

In this paper, the sample x will be represented by a row vec-
tor. Focusing on multi-class classification task, we denote the
source data by Dg = {x;}]", x € R with labels Y5 = {y;}]",
y € {1,2,...,L}, and target data by Dy = {u;}}, u € R%,
where x and u are d dimensional feature representations. To
be convenient, the augmented domain containing all data from
source and target domain is denoted by Dg U Dr.

Inspired by augmented feature technique [4], we extract
information from both domains to represent each instance. To
be specific, we let the similarities between instance x; and all
instances in Dg U D7 be the new feature representation of x;,
denoted by 5\(2 = ({lATil, L%ig, e 7‘%i(m+n))s ie.

Zy; = sim(x;,2;),2; € Dg U Dr. (D)

The new source data projected into the common feature space
is denoted by Xg = {%;}]", X € R™*™. Analogously, the
new target data is Xy = {@;}}, @ € R™*". Then a SVM
classifier can be trained on Xg and applied to X7. Notice that
the dimensionality of projected feature has changed from d to
m~+n. If m+n > d, the time complexity to train the classifier
can be unbearable. We can deal with this problem with a kernel
SVM model which will described in next subsection.

B. Algorithm

It seems that the similarity measure in Eq. (1) is critical
to our domain adaptation method. Even though the choice
can be Euclidean distance, Mahalanobis distance, linear kernel
function, Gaussian kernel function or any other similarity
metric, the resulting performance has no much difference. To
be simplified, the linear kernel function K(a,b) = ab' is
utilized to measure the similarity between instances a and b.
So Eq. (1) is replaced by

&ij = X2, ,2; € Dg U Dr. 2)
And the projected source and target data are
Xs=Ds-(DsUDr)",

3
Xr=Dr-(DsUDp)". ®)

Until now, our domain adaptation task has been fulfilled,
as presented in Algorithm 1. The following procedure should
be training and testing classifier on Xg and X respectively.
However, the projected data may encounter high dimension-
ality problem because the number of samples in source and



target domain, m + n, can be very large. We propose to use a
linear kernel SVM trained on Xg to overcome this problem.
Then the kernel matrix of Xg is

T
XsXg = Ds(DsUDr)" (Ds(DsUDrp)")
D
_ T T S| T
=Ds [D§ Dy [DT} Dg @)
= Dg (D§ Ds + Dy Dy) D§.
When test on X7, the kernel matrix is

XrXg = Dy (D{Ds + D} Dr) Dg. (5)

Let A= DI Dg+ D] Dr, then A is apparently positive semi-
definite matrix and is of size d x d. In this way, we can bypass
Xgs and X and directly feed DSAD—Sr into a SVM training
model (e.g. libsvm with kernel type ¢t = 4). There is no doubt
that the testing results of these two strategies are consistent,
but the efficiency of the latter overwhelms the former when
m+n>d.

Algorithm 1: Easy unsupervised domain adaptation.

Input: Source domain Dg;
Target domain Dyp.
Output: Projected source data Xg;
Projected target data Xp.
1 Xg=Ds-(DsUDrp)";
2 XT = DT . (DS @] DT>T;

C. Relation to existing methods

As discussed in last subsection, we can establish a positive
semi-definite matrix A to imply the linear transformation for
original instance. Deploy eigenvalue decomposition on A to
get A = UNUT = (UA2)(UA2)T where U is formed by
eigenvectors and A by corresponding eigenvalues of A. So
our kernel function is

K(x;,%x;) = xiAX;r
= (xiUAZ)(x;UAZ)T (6)
= (B(xi), D(x;)) -

And thus the feature mapping function is ®(x) = x - (UA?)
which means that the common feature space is reached by a
linear projection for each instance from original domains.

The Subspace Alignment (SA) method [12] actually al-
so aims to find a transformation matrix A, then trains a
SVM with DSASGD;«r just like what we do. However, their
Asa = (Pr.uP)(Q1.1xQ7 ), where Py and Q. are the
first k£ principal components of source data Dg and target
data D respectively, requires selecting the dimensionality %
of the subspace.

Similarly, the Geodesic Flow Kernel (GFK) method [11]
ends up with a transformation A, studied, although it is de-
rived from analyzing lots of manifold subspaces. This method
succeeds to calculate A, in a closed form but still suffers

from the inconvenience of determining the dimensionality of
subspaces.

The Correlation Alignment (CORAL) approach [5] is no-
table for simplicity and effectiveness. It accomplishes domain
adaptation task by aligning the covariances of source and target
domains. The corresponding transformation matrix is

A, = (cov(Dsg) + 61) "% (cov(Dz) + 61) "% ,

where a parameter § needs to be determined. Furthermore,
when Dg and D7 are normalized to zero-mean, our trans-
formation A = d(cov(Dg) + cov(Dr)) where d is the
dimensionality of the sample in Dg or Dr. We can notice that
both CORAL method and ours explore the fusion information
of covariances of source and target domains. But apparently
our method is more simple and efficient.

IV. EXPERIMENTS

We evaluate our method on object recognition task using
standard benchmarks and protocols [1], [11], [12], [5]. In all
experiments we assume the target domain is unlabeled.

A. Datasets

We use the standard Office [1] and extended Office-
Caltech10 [11] datasets as benchmarks. The Office dataset
consists of images from Webcam (denoted by W), DSLR
images (denoted by D) and Amazon images (denoted by A).
The CaltechlO images are denoted by C. So the Office-
Caltech10 dataset contains totally 4 domains, each of which
contains 10 categories of office objects (back_pack, bike,
calculator, headphones, keyboard, laptop_computer, monitor,
mouse, mug and projector). Therefore 12 domain adaptation
problems can be conducted. We denote a domain adaptation
problem by the notation S — 7T, namely, A—C (train a
classifier on Amazon and test on Caltech10), C—W, W—A,
and so on. We use the image representations provided by [11]
for Office-Caltech10 dataset (SURF features encoded with a
visual dictionary of 800 words).

B. Experimental setup

We compare the proposed domain adaptation approach
with three recent published domain adaptation methods (GFK
[11], SA [12] and CORAL [5]) and no adaptation (NA)
baseline. GFK (Geodesic Flow Kernel) and SA (Subspace
Alignment) are manifold based methods that project the source
and target distributions into a lower-dimensional manifold.
The GFK method uses the kernel trick to integrate over an
infinite number of subspaces along the subspace manifold.
SA aligns the source and target subspaces by minimizing the
Frobenius norm of their difference. The CORAL (Correlation
Alignment) eliminates the distribution difference by aligning
the covariances of source and target domains. The baseline
NA directly employs the classifier trained on original source
domain to test the target domain.

We use the standard random-sampling protocol and fully-
transductive protocol as in [11], [12], [5] to evaluate the perfor-
mances of domain adaptation methods. The random-sampling



TABLE I
ACCURACIES OF ALL 12 DOMAIN SHIFTS ON THE OFFICE-CALTECH10 DATASET UNDER RANDOM-SAMPLING PROTOCOL

A— C A— D A— W C— A C—D C—> W D— A D— C D— W W— A W— C W— D AVG
NA 35.7 34.5 25.4 429 39.2 31.6 354 31.3 71.7 323 25.6 78.4 40.3
SA [12] 40.0 38.3 40.0 47.3 39.4 40.4 35.8 34.7 67.6 36.8 32.0 66.5 43.2
GFK [11] 40.4 39.6 38.4 48.6 42.5 40.8 39.0 334 727 34.5 313 74.9 44.7
CORAL [5] 40.1 36.4 38.0 47.1 37.7 39.4 37.5 33.7 80.5 37.9 343 84.5 45.6
Ours 40.5 38.0 39.7 48.0 43.1 41.8 39.1 34.9 80.8 36.9 329 84.6 46.7
TABLE II

ACCURACIES OF ALL 12 DOMAIN SHIFTS ON THE OFFICE-CALTECH 10 DATASET UNDER FULLY-TRANSDUCTIVE PROTOCOL
A— C A— D A— W C— A C—D C— W D— A D— C D— W W— A W— C W— D AVG
NA 41.7 44.6 31.9 53.1 47.8 41.7 26.2 26.4 52.5 27.6 21.2 78.3 41.1
SA [12] 42.0 40.8 414 51.1 44.6 39.0 38.1 342 70.8 36.2 31.2 71.3 45.1
GFK [11] 439 41.4 414 55.2 427 42.0 40.3 35.3 74.2 343 28.9 79.6 46.6
CORAL [5] 45.1 39.5 44.4 52.1 459 46.4 37.7 33.8 84.7 36.0 33.7 86.6 48.8
Ours 45.0 38.2 41.0 56.2 47.8 48.8 404 36.5 83.4 36.8 32.1 87.3 49.5

protocol randomly selects 20 images for each category to form
the training set when the source domain is A, C or W, and 8
images for source domain D. Then the training set adapted by
domain adaptation approaches is used to train a SVM (libsvm)
classifier and then all instances in target domain are tested
by the trained classifier. For each domain adaptation problem
we repeat the experiment 20 times and report the average
classification accuracy. The fully-transductive protocol trains
and tests the classifier on all instances of source domain and
that of target domain.

C. Results

The experimental results of domain adaptation methods on
the Office-Caltech10 dataset using random-sampling protocol
are shown in Table I. The results of methods GFK [11], SA
[12] and CORAL [5] are reported using the codes provided
by the corresponding authors rather than directly using the
results in their papers. Our approach outperforms the others on
7 domain adaptation problems as well as in terms of average
accuracy. Note that our method is free of hyper-parameters and
thus much more efficient. The results conducted under fully-
transductive protocol, as shown in Table II, also demonstrate
the effectiveness of our method. By comparing Table II and I,
we can say that the performance difference between NA and
other methods is smaller as more source data is used. This
may be because when more training data is used, the intra-
class difference is getting larger and the classifier needs to
focus more on the “essence” of an object. This is also reflected
on the observation that the NA method achieves the highest
accuracy on domain adaptation problems A—D and C—D in
Table II.

V. CONCLUSION

In this paper, we proposed an extremely easy domain
adaptation method. It projects all instances in source and target
domains into a common feature space by using a linear kernel
function. The domain shift is eliminated by fusing the covari-
ances of source and target domains. While neither complex
procedure nor hyper-parameter is needed, our approach can be
implemented easily. Despite of the simplicity, our approach is

also effective, which is demonstrated by extensive experiments
on standard benchmarks. The future work is to extend our
method to multi-source domain adaptation.

ACKNOWLEDGEMENT

This work was financially supported by the National Natural
Science Foundation of China (Project no. 60970034, 61170287
and 61232016).

REFERENCES
[1] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in European Conference on Computer Vision
(ECCV), 2010, pp. 213-226.
A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in /[EEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2011,
pp. 1521-1528.
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “DeCAF: A deep convolutional activation feature for generic
visual recognition,” in International Conference on Machine Learning
(ICML), 2014, pp. 647-655.
H. Daumé III, “Frustratingly easy domain adaptation,” in Annual Meet-
ing of the Association for Computational Linguistics (ACL), 2007, pp.
256-263.
B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), 2016.
S.J. Pan, J. T. Kwok, and Q. Yang, “Transfer learning via dimensionality
reduction,” in Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI), 2008, pp. 677-682.
L. Duan, D. Xu, I.-H. Tsang, and J. Luo, “Visual event recognition
in videos by learning from web data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 34, no. 9, pp. 1667—
1680, 2012.
Y. Guo and M. Xiao, “Cross language text classification via subspace
co-regularized multi-view learning,” in International Conference on
Machine Learning (ICML), 2012.
J. Huang, A. Gretton, K. M. Borgwardt, B. Scholkopf, and A. J. Smola,
“Correcting sample selection bias by unlabeled data,” in Advances in
neural information processing systems (NIPS), 2006, pp. 601-608.
J. Jiang and C. Zhai, “Instance weighting for domain adaptation in NLP,”
in Annual Meeting of the Association for Computational Linguistics
(ACL), vol. 7, 2007, pp. 264-271.
B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012, pp. 2066-2073.
B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in IEEE Interna-
tional Conference on Computer Vision (ICCV), 2013, pp. 2960-2967.

[2

—

3

—

[4

=

[5

—_

[6

[t

(71

(8]

[9]

[10]

(11]

[12]



[13]

[14]

M. Long, J. Wang, G. Ding, J. Sun, and P. Yu, “Transfer joint matching
for unsupervised domain adaptation,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014, pp. 1410-1417.

R. Caseiro, J. F. Henriques, P. Martins, and J. Batista, “Beyond the
shortest path: Unsupervised domain adaptation by sampling subspaces
along the spline flow,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3846-3854.



