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Abstract

Singular point is an essential global feature in fingerprint images. Existing methods for
singular points detection generally visit each pixel or each small image block to determine
the singular point. That is to say, existing methods require scanning the image to
compute a quantity at each pixel or block, and hence they are inevitably time-consuming.
We propose a fast algorithm for detecting singular points by walking directly to them
instead of scanning the image. Walking Directional Fields (WDFs) are established from
the orientation field. Then following the walking directions onWDFs, we can rapidly walk
to the singular points. The walking algorithm is extremely fast and easily implemented
with acceptable accuracy. Further more, its accuracy can also be improved by combining
with state-of-the-art methods: we can rapidly walk to a candidate singular point, then
refine its location using existing more accurate method in the local area. Experimental
results on datasets of SPD2010 and FVC validate the high efficiency and satisfactory
accuracy of the proposed algorithm.
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1. Introduction

Fingerprint singular points (upper core, lower core and delta), defined as where the
orientation field is discontinuous or the ridge curvature is the highest, are essential for reg-
istration and identification (specially for image-based approach instead of minutiae-based
approach) [1, 2]. Singular points detection methods have been well studied, including
Poincaré index (PI) technique [3, 4, 5, 6, 7, 8], model-based technique [9, 10, 11, 12],
complex filter technique [13, 14, 15, 16, 17, 18] and others [19, 20, 21, 22]. However,
these methods are based on scanning process which consumes a lot of processing time as
shown below.

The Poincaré index of a point is defined as the cumulative orientation differences
counterclockwise along a simple closed path surrounding this point. For core, delta and
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non-singular point, the values of Poincaré index are π, −π and 0 respectively. The
Poincaré index method, first proposed by Kawagoe and Tojo [3], calculates Poincaré
index for each point in the orientation field to determine whether it is a singular point.
The Poincaré index method is the most classical way to detect singular points, because
it can detect singular points accurately if the closed path is not too long. However it’s
sensitive to the noise of fingerprint image and easy to detect many spurious singular
points. To improve the robustness, different strategies are used, such as replacing closed
line integral with surface integral [4], fusing global features [5, 6, 7] and combining with
other local characteristics [8]. They surely need extra processing time compared with
the original Poincaré index method.

Model-based methods use mathematical formula to represent the orientation field and
detect singular points by analysing the corresponding model. The most popular model
is the zero-pole model, first introduced by Sherlock and Monro [9], which reveals that
the orientation at a point is determined by the number and positions of singular points
(cores as zeros and deltas as poles) plus a constant correction term. According to this
constraint, special relationship between singular points and their neighbor points can
be derived, then a Hough transform method [11] or a modified convergence index filter
[12] is utilized to detect singular points. Although the accuracies of these methods are
satisfactory, the efficiencies are not promising because Hough transform needs to scan all
pixels to fill the parameter space and the modified convergence index filter needs to be
applied to each pixel to find maxima and minima. Wang et al. [10] proposed a singular
point detection method using fingerprint orientation model based on 2D Fourier series
expansions (FOMFE). The FOMFE detects singular point by analysing the attributes
of the characteristic matrix A, while the construction of A dominates the computation
as it is conducted at each point on the orientation field, which constrains the efficiency
of this method.

Complex filter technique [13, 14, 15, 16, 17, 18] design two complex filter to capture
the symmetry properties of core and delta respectively. Then the convolution of the
complex orientation field image with each complex filter is computed and the point with
high filter response is taken as the singular point. Similar to Poincaré index method,
complex filter technique can be accurate when the size of complex filter is small but will
report more spurious singular points. If the filter size is too large, the accuracy and
efficiency degrade. Nilsson and Bigun [15] makes a tradeoff between detection rate and
false alarm rate by applying complex filter to the orientation field in multiple resolution
scales, but more time is needed.

Other methods like sine-map-based technique [19], shape analysis method [20], multi-
scale Gaussian filter method [21] and multi-scale orientation entropy method [22] all need
to visit every pixel or block to extract enough information to detect singular points.

To sum up, almost all of state-of-the-art methods for detecting fingerprint singular
point can hardly avoid visiting every pixel or small block to determine whether it is a
candidate singular point, which fundamentally constrains the efficiency of these methods
from being improved extraordinarily.

Based on the analysis of orientation fields derived from Zero-pole Model and those
estimated from real fingerprint images, in this paper we propose a novel fast algorithm
termed walking algorithm which can directly walk to the singular points on some de-
fined Walking Directional Fields (WDFs) without scanning the fingerprint image. The
rotation characteristics of WDFs are used to make the walking algorithm insensitive to
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the rotation of fingerprint image. We also introduce a simple strategy to combine the
walking algorithm with state-of-the-art method to improve the accuracy. The code of
the walking algorithm can be available at http://cn.mathworks.com/matlabcentral/
fileexchange/54588-walking-algorithm-for-sp-detection or at github: https:

//github.com/XifengGuo/Walking-to-SP.git. The rest of this paper is organized as
follows. Section 2 introduces the WDFs which are the basis of the proposed algorithm.
Then the walking algorithm is described in Section 3. Section 4 shows some experimental
results. Finally we give conclusions in Section 5.

2. Walking Directional Fields

2.1. Zero-Pole Model

Zero-pole Model for orientation field estimation was first proposed by Sherlock and
Monro [9]. This model considers core as zero and delta as pole in the complex plane,
and uses the argument of complex function p(z) to approximate the orientation o(z) of
a point z in the fingerprint. p(z) and o(z) are defined as follows:

p(z) =

√
e2jo∞

(z − zc1)(z − zc2) · · · (z − zcm)

(z − zd1)(z − zd2) · · · (z − zdn)
, (1)

o(z) = arg(p(z)) mod π. (2)

where zci and zdj are the ith core and jth delta of fingerprint respectively, and o∞ is a
constant correction term. According to the knowledge of complex function, orientation
at point z is the sum of effects of all cores and deltas, so Eq. (2) can be rewritten as

o(z) = o∞ +
1

2

 m∑
i=1

arg(z − zci)−
n∑

j=1

arg(z − zdj)

+ k × π, k ∈ N. (3)

According to [11], orientation field in area Ω is mainly determined by its closest singular
point, while the other singular points just have a constant influence on Ω. So the orienta-
tion of point z near core point zc and that near delta zd can be respectively approximated
by Eq. (4) and (5).

oc(z) = oc∞ +
1

2
arg(z − zc) + k × π, k ∈ N, (4)

od(z) = od∞ − 1

2
arg(z − zd) + k × π, k ∈ N. (5)

Fig. 1 shows the orientation fields around a core and delta generated by the above two
equations with zc = (50, 50), zd = (50, 50) and oc∞ = od∞ = 0. We define the directions
of a core and a delta as the positive directions of the x-axis in Fig. 1. Then when o∞
changes, the directions of a core and a delta will equal 2oc∞ and (2od∞/3) respectively.
The proof is as follows:

proof. Suppose the image in Fig. 1a is rotated counterclockwise by θ round the core,
then the direction of the core should be θ. Choose a point z in the origin image and the
counterpart z′ in the rotated image, then we have

o′c(z
′)− oc(z) = arg(z′ − zc)− arg(z − zc) = θ, (6)

3
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Figure 1: Orientation field around (a) a core and (b) a delta, simulated by Zero-pole
Model.

where o′c(z
′) denotes the orientation of z′ in the rotated image. According to Eq. (4), z′

satisfies

o′c(z
′) = o′c∞ +

1

2
arg(z′ − zc) + k′ × π, k′ ∈ N, (7)

then it subtracts Eq. (4) to get

o′c(z
′)− oc(z) = o′c∞ − oc∞ +

1

2
(arg(z′ − zc)− arg(z′ − zc))

+ (k′ − k)× π, (k′ − k) ∈ N.
(8)

Substitute Eq. (6) into Eq. (8), we can get

θ = 2(o′c∞ − oc∞). (9)

As we know, for the origin image there is oc∞ = 0, so the direction of the core zc is 2o
′
c∞.

We can prove the direction of the delta zd is (2o′d∞/3) in a similar way.

For cores, when −π ≤ 2oc∞ < 0, we call them upper cores, and when 0 ≤ 2oc∞ < π,
we call them lower cores. When 2oc∞ = −π/2 and 2oc∞ = π/2, we obtain the orientation
fields for ideal upper core and lower core respectively, as shown in Fig. 2a and 2d. For
deltas, the ideal orientation field is obtained when 2od∞/3 = π/2, as shown in Fig. 2g.
The orientations of points around the ideal upper core zuc, lower core zlc and delta zd
are given by Eq. (10), (11) and (12) respectively.

ouc(z) =
1

2
arg(z − zuc)−

π

4
+ k × π, k ∈ N, (10)

olc(z) =
1

2
arg(z − zlc) +

π

4
+ k × π, k ∈ N, (11)

od(z) = −1

2
arg(z − zd) +

3π

4
+ k × π, k ∈ N, (12)

2.2. Analysis of Directional Fields

In the local area around singular points we obtained orientation field estimation
equations (see Eq. (10), (11) and (12)) according to Zero-pole Model, now we calculate
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Figure 2: Orientation fields, SDFs and WDFs of (a)-(c) ideal upper core, (d)-(f) ideal
lower core and (g)-(i) ideal delta simulated by Zero-pole Model.
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the Squared Directional Field (SDF) [4] by doubling o(z) at each pixel, i.e.

SDFuc(z) = 2ouc(z) = arg(z − zuc)−
π

2
, (13)

SDFlc(z) = 2olc(z) = arg(z − zlc) +
π

2
, (14)

SDFd(z) = 2od(z) = − arg(z − zd) +
3π

2
. (15)

These SDFs are illustrated in Fig. 2b, 2e and 2h. By observing these pictures, we can
notice that the upper core is surrounded by some clockwise circles in SDFuc. Therefore,
if each direction in SDFuc minus π/2, as shown in Fig. 2c, the upper core will be
pointed to by all surrounding directions in the new directional field. And the lower core
is surrounded by counterclockwise circles in SDFlc, so adding π/2 to each direction in
SDFlc can make the lower core be pointed to by its surrounding directions. However,
the characteristics of SDFd are not so obvious.

On the other hand, by analysing the above equations, we can get more clear and
understandable inferences. We all know the argument, arg(z − zuc), has the direction
from zuc to z, so (arg(z − zuc)± π) makes the direction of each z point to zuc. Rewrite
Eq. (13) as

2ouc(z)−
π

2
= arg(z − zuc)− π, (16)

then from any point z near zuc, we can always walk along the above direction to the upper
core zuc. This direction is called walking direction, and the direction field is defined as
Walking Directional Field (WDF) of upper core, represented by WDFuc,

WDFuc(z) = 2ouc(z)−
π

2
. (17)

Analogically, we can define WDF of lower core and delta as

WDFlc(z) = 2olc(z) +
π

2
, (18)

WDFd(z) = −2od(z) +
π

2
. (19)

These three kind of WDFs are illustrated in Fig. 2c, 2f and 2i.
Although the characteristics of WDFs derived from Zero-pole Model are so perfect,

they will not be so ideal for real fingerprint images because of multiple singular points and
low quality. In the following part, we will analyse WDFs estimated from real fingerprint
images.

First of all, the orientation field, Θ, of fingerprint image should be estimated. There
are many methods for orientation field estimation, such as gradient-based methods [23,
24, 25], model-based method [26, 27, 28] and others [29, 30]. In this paper, we estimate Θ
using the publicly available Matlab source codes [31], which follows the basic algorithm
in [23].

After estimating the orientation field Θ, the ouc(z), olc(z) and od(z) in Eq. (17), (18)
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and (19) are replaced by Θ(i, j) to derive the WDFs of real fingerprint image:

WDFuc(i, j) = 2Θ(i, j)− π

2
, (20)

WDFlc(i, j) = 2Θ(i, j) +
π

2
, (21)

WDFd(i, j) = −2Θ(i, j) +
π

2
. (22)

As same as [4], SDF is defined as

SDF (i, j) = 2Θ(i, j). (23)

Some examples of SDF and WDFs estimated from real fingerprint images are shown in
Fig. 3, from which we can validate that the characteristics of SDF and WDFs in the

(a) (b) (c)

(d) (e) (f)

Figure 3: Examples of different directional fields. (a)-(c) SDF , WDFuc and WDFlc

derived from the same image. (d)-(f) SDF , WDFuc and WDFd derived from another
image.

corresponding singular area comply with the analysis of the directional fields derived
from Zero-pole Model (see Fig. 2). Further observations for Fig. 3 reveal the following
interesting phenomena.
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1) From any point on WDFuc, we can always walk to either the upper core or the
outside of the fingerprint foreground. Analogically, we can walk to the lower core
on WDFlc and to the delta on WDFd.

2) If the lower core is detected, we can walk to the upper core from the upper area
of the lower core on WDFuc with highest probability (see Fig. 3b) and vice versa
(see Fig. 3c).

3) If the delta is detected, we can walk to the upper core from the upper area of the
delta on WDFuc with highest probability (see Fig. 3e and vice versa (see Fig. 3f).

Therefore, it is feasible to design an algorithm of detecting singular points by directly
walking from some points to them on WDFs, which should be extremely fast because
this algorithm only need to visit tens of points without scanning the image.

2.3. Rotation Analysis of WDFs

Intuitionally, the proposed WDFs are sensitive to rotation of fingerprint image, we
analyse this characteristic in this subsection.

Section 2.1 has proved the directions of core and delta are 2oc∞ and (2od∞/3), and
the directions of ideal upper core, lower core and delta are 2oc∞ = −π/2, 2oc∞ = π/2
and 2od∞/3 = π/2 respectively. Hence the rotation angles of the ideal upper core, lower
core and delta are

ϕuc = 2oc∞ +
π

2
, (24)

ϕlc = 2oc∞ − π

2
, (25)

ϕd =
2

3
od∞ − π

2
. (26)

Some examples of WDFs derived from Zero-pole Model with different rotation angles are
shown in Fig. 4. Let 2T be the period of the directions of singular points, then T = π
and T = π/3 for core and delta respectively. Fig. 4 indicates T/2 is the critical rotation
angle between convergence and divergence. While for real fingerprint images, as shown
in Fig. 5, it is hard to ensure the convergence when the rotation angle is near T/2. So
we conservatively choose T/4 as the critical rotation angle for stable convergence. In
other words, if the rotation angle is in range [−T/4, T/4], we can walk along the walking
direction to the singular point stably. Specifically, the stable range is [−π/4, π/4] for core
and [−π/12, π/12] for delta. Note that the rotation angle mentioned here is relative to the
direction of singular point, not necessarily to be consistent with the angle of fingerprint
image rotation. Therefore, our WDFs may achieve better performance in singular points
detection if the fingerprint images are pre-aligned to the rotation range [−π/12, π/12]
relative to deltas or [−π/4, π/4] relative to cores.

However, if the rotation angle ϕ respect to a certain singular point is estimated or
chosen by sampling, the WDFs can be easily modified to

WDFuc(i, j) = 2Θ(i, j)− π

2
− ϕuc, (27)

WDFlc(i, j) = 2Θ(i, j) +
π

2
− ϕlc, (28)

WDFd(i, j) = −2Θ(i, j) +
π

2
+ 3ϕd. (29)
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Figure 4: WDFuc, WDFlc and WDFd (top to bottom) derived from Zero-pole Model
rotated by 0, T/4, T/2, 3T/4 and T (left to right).

Figure 5: WDFuc, WDFlc and WDFd (top to bottom) estimated from real fingerprint
image rotated by 0, T/4, T/2, 3T/4 and T (left to right).
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Here we give the proof for Eq. (27), the other two equations can be proved in the same
way. Substitute Eq. (24) into Eq. (4), we can get

ouc(z) =
1

2
arg(z − zuc) +

ϕuc

2
− π

4
+ k × π, k ∈ N, (30)

then both sides of equal sign are multiplied by 2 and reform the result to

2ouc(z)−
π

2
− ϕuc = arg(z − zuc)− π. (31)

Compare it with Eq. (16) and Eq. (17), we can get

WDFuc(z) = 2ouc(z)−
π

2
− ϕuc. (32)

Transform from complex plane to image plane and replace ouc with Θ, we can obtain
Eq. (27) finally.

These modified equations can help deal with large rotated fingerprint images. The
details will be discussed in Section 3.4.

3. Walking to Singular Points on WDFs

From a starting point, we may walk to the singular point on WDFs and the details of
walking strategy will be discussed in Section 3.1 (Algorithm 1). However, the detected
singular point can be spurious, so we propose an approach to discriminate the spurious
singular point in Section 3.2. On the other hand, we cannot always walk to a singular
point from any starting point. To improve the detection rate, more than one starting
point are tried using Algorithm 1. This progress is summarized in Section 3.3 (Algorithm
2). At last, in Section 3.4 we handle the detection failure caused by fingerprint rotation
using WDF with different modified term ϕ (see Eq. (27), (28) and (29)) and give the
whole walking algorithm in Algorithm 3. The block diagram of the walking algorithm is
illustrated in Fig. 6.

3.1. Walking From a Given Starting Point

In Section 2.2, we established three WDFs (WDFuc, WDFlc and WDFd) and noticed
that from certain point we may walk directly to the corresponding singular point. Here
the details of walking scheme are described.

Without loss of generality, we take WDFuc as an example. Suppose the starting
point is P0 = (x0, y0), the length of walking step is d (d = 7 pixels in our study) and
the direction of the starting point is α0 = WDFuc (y0, x0). Then the new position
P1 = (x1, y1) after walking one step can be calculated by

x1 = x0 + [d · cos (α0)] ,

y1 = y0 + [d · sin (α0)] ,
(33)

where [·] is the round operator. Keep walking to the kth point Pk = (xk, yk), calculated
by

xk = xk−1 + [d · cos (αk−1)] ,

yk = yk−1 + [d · sin (αk−1)] ,
(34)

10



Algorithm 3: 

Walking algorithm

WDFs with 

different 

rotation

Algorithm 2: 

Walking from a set of starting points

different 

starting 

point

Algorithm 1: 

Walking from a starting point

Figure 6: The block diagram of our walking algorithm.

where k ≥ 1, (xk−1, yk−1) is the coordinate of the (k − 1)th point Pk−1 and αk−1 is the
walking direction at Pk−1, given by

αk−1 = WDFuc (yk−1, xk−1) . (35)

Let Path = {P0, P1, · · · , Pk} denote the walking path and δk denote the least distance
between the end point of Path, Pk, and the other points in Path, i.e.

δk = min
{√

(xi − xk)2 + (yi − yk)2
∣∣∣ i = 0, 1, · · · , k − 1

}
. (36)

As we can see in Fig. 3b and 3e, when we walk into the singular region of the upper
core, we can not walk out, which leads to the gradual decrease of δk. Give a threshold
Tδ (Tδ = d/2 in our study), then we will stop walking once δk < Tδ, where we say a loop
occurs on the walking path. The center point of the detected loop serves as a candidate
for the upper core, Puc, obtained by

xuc =
1

k − i0 + 1

k∑
j=i0

xj ,

yuc =
1

k − i0 + 1

k∑
j=i0

yj ,

(37)

where (xuc, yuc) gives the position of Puc, (xj , yj) is the coordinate of Pj , which is on the
detected loop of Path, and (xi0 , yi0) is the coordinate of point Pi0 which is the beginning
point of the detected loop on Path, satisfying

δk =
√
(xi0 − xk)2 + (yi0 − yk)2. (38)
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However, it is possible to walk to the outside of fingerprint foreground, in which case
we declare that the attempt to walk to singular point from the given starting point P0

comes into a failure. The process of walking from a given starting point is summarized
in Algorithm 1 which is also applicable to walking on WDFlc and WDFd.

Algorithm 1: Walking from a given starting point.

Input: WDFuc, P0

Output: Puc or Failure
1 Path = {P0};
2 for k = 1 to ∞ do
3 Get Pk according to Eq. (34);
4 if Pk is not in the foreground then
5 return failure;

6 Path = Path ∪ Pk;
7 Get δk using Eq. (36);
8 if δk < Tδ then
9 return Puc (calculated by Eq. (37));

Some examples of the process of walking from some given points to the corresponding
singular points on WDFs are shown in Fig. 7. Apparently, if we can walk to the singular
point from a proper starting point, the walking path will not be too long. While each
step just need very simple calculation as described above, the whole process will be
significantly fast.

(a) (b) (c)

Figure 7: Walking from the given starting points on (a) WDFuc, (b) WDFlc and (c)
WDFd. Starting point and detected singular point are marked with red “�” and green
“⃝” (“△”) respectively, and blue markers are ground truth.

3.2. Removing Spurious Singular Points

We described the process of walking from a given starting point to the singular point
on the corresponding WDF in Section 3.1. Although we can walk to the genuine singular
point in most cases, spurious singular points still can stop the walking process in noisy

12



(xr, yr)

dx

dy

Figure 8: Sampling starting points with n = 2.

image. By analysing the local area of spurious singular points, we notice that from
some neighbor points we can not walk back to the same local area. According to this
characteristic, we define the neighborhood of a candidate singular point as a circular
area with radius R = 2d (length of two walking steps) and neighbors as four quadrantal
points. Therefore, from each neighbor a new candidate singular point can be found
using Algorithm 1. If all of the four new candidate singular points locate in the defined
neighborhood, the original candidate singular point is deemed as genuine singular point;
otherwise, it is deemed as spurious one.

3.3. Choosing Starting Points

In Section 3.1, we described the process of walking to the candidate singular point
from a given starting point, then proposed an approach to determine whether a candidate
singular point is spurious one in Section 3.2. Unfortunately, we can not make sure that
from any starting point Algorithm1 always outputs a genuine singular point. It is a
natural thought to improve the detection rate by selecting more starting points. A
simple selection strategy is used in this section, i.e. choose starting points by sampling
in fingerprint foreground and collect them into a set S. Suppose the left top corner point
and the size of the bounding rectangle of fingerprint foreground are (xr, yr) and wr × hr

respectively, then we sample points with step length along x-axis, dx = ⌊wr/(n+ 1)⌋,
and step length along y-axis, dy = ⌊hr/(n+ 1)⌋, where ⌊·⌋ is floor operator and n (n = 2
in our study) denotes the number of points to be sampled along x-axis or y-axis. So

S =
{
(x, y)

∣∣∣x = xr + i · dx, y = yr + j · dy,M(y, x) = 1, i, j = 1, 2, · · · , n
}

(39)

where M(y, x) = 1 denotes that (x, y) is in the foreground. Therefore the number N of
points in S is not more than n2, i.e. N ≤ n2. Fig. 8 shows an example of sampling
points with n = 2.

Therefore for each starting point Pi ∈ S, a result can be obtained using Algorithm 1
and then be determined whether it is a spurious singular point according to Section 3.2.
For cores, at most one upper core and one lower core are detected. While more than
one delta may exist, so for each starting point in S a candidate delta is tried to detect.
If there are many deltas in a circular region with radius 10 pixels, these deltas will be
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replaced by their average point. The progress is summarized in Algorithm 2, which is
also applicable to lower core and delta detection.

Algorithm 2: Walking from a set of starting points.

Input: WDFuc (Walking Directional Field of upper core)
Output: Puc (upper core)

1 for each starting point p ∈ S do
2 Get a candidate Puc by Algorithm 1 with p and WDFuc;
3 if Puc is not spurious (see Section 3.2) then
4 return Puc;

3.4. Dealing with Rotation of Fingerprints

If the fingerprint images are in the rotation range [−T/4, T/4] with respect to the
direction of singular point, where T = π for core and T = π/3 for delta, our Algorithm 1
can work well. But large rotated images maybe exist, in which case Algorithm 1 might
fail to detect the singular point for any starting point. This section describes how to use
the rotation properties of WDFs (see Section 2.3) to deal with large rotated fingerprints.

As the period of direction of singular point is 2T , so any rotation angle ϕ can be
converted to [−T, T ]. And for any rotation angle ϕ ∈ [−T, T ], we can always find a
number k ∈ N to satisfy (ϕ + kT/2) ∈ [−T/4, T/4]. So we let correction term ϕ (ϕuc,
ϕlc and ϕd) in Eq. (27), (28) and (29) successively be 0, T

2 , T and 3T
2 , then no singular

point in theory can be missed.
However, these trials not only costs more processing time but also tends to detect more

spurious singular points. By observing fingerprints, we believe the following statements
are always true:

1. At most 2 cores and 2 deltas can be found in a fingerprint image.
2. If there are 2 cores in a fingerprint image, their directions are always approximately

opposite
3. If there are 2 deltas in a fingerprint image, their directions are always approximately

equal.

Therefore, for a certain value of correction term ϕ, if the upper core is detected on
WDFuc, the lower core (if exists) can be detected on WDFlc meanwhile, and vice versa.
Deltas are also detected simultaneously. So we need not try to detect cores (deltas) for
the new ϕ if cores (deltas) have been detected by using last ϕ.

When the fingerprint image is rotated, there will be no obvious difference between
the upper core and lower core. This is also reflected in Fig. 4 where the first row and
the second row have the same shapes. Therefore we use WDFc1 and WDFc2 represent
two kinds of WDFs of cores. Then rewrite Eq. (27), (28) and (29) into (40).

WDFc1(i, j) = 2Θ(i, j) +
kπ

2
,

WDFc2(i, j) = 2Θ(i, j) +
kπ

2
− π,

WDFd(i, j) = −2Θ(i, j) +
kπ

2
.

(40)
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According to the above analysis, we summarize the whole walking algorithm in Algo-
rithm 3.

Algorithm 3: Walking algorithm.

Input: Θ (Orientation field)
Output: Pc (cores) and Pd (deltas)

1 for k = 1 to 4 do
2 Get WDFc1, WDFc2 and WDFd using Eq. (40);
3 if no core is detected then
4 For each starting point p ∈ S, run Algorithm1 with inputs p and WDFc1

until the result is a genuine core Pc1 (i.e. Algorithm 2);
5 Get a genuine core Pc2 using WDFc2 in the same way;

6 if no delta is detected then
7 For each starting point p ∈ S, get a genuine delta using WDFd and add it

to Pd;

8 Replace points in Pd which are too close with their average point;
9 Output Pc = {Pc1, Pc2} and Pd;

4. Experimental Results

4.1. Datasets and Parameters

The proposed walking algorithm is tested on the subset of FVC database and the
benchmark database of the first fingerprint singular points detection competition (SPD2010).
The former one, FVC database, is extensively used in evaluating the performance of d-
ifferent fingerprint verification methods. We choose the first imprint of each finger in
FVC2000 DB2 [32], FVC2002 DB2 [33] and FVC2004 DB2 [34], total 330 fingerprints.
Then divide them into two parts: those belongs to DB2A, total 300 fingerprints, are
added to the testing set, and those in DB2B, total 30 fingerprints, are added to the
training set. The singular points of these fingerprints are manually labeled beforehand
to obtain ground truth.

The SPD2010 database has 500 fingerprint images with size 355×390 pixels, captured
by an optical scanner, Microsoft Fingerprint Reader C model 1033, without any restric-
tions on the poses of fingers. The fingerprint images in SPD2010 database vary largely in
quality, type, affine transformation and nonlinear distortion. The ground truths of cores
and deltas are publicly available at http://paginas.fe.up.pt/∼spd2010/, obtained by
hand according to the definition of singular points in [35]. We sample 50 fingerprints s-
tarting from the first image with a step length of 10 in the whole SPD2010 dataset and
add them into the training set. The rest of fingerprints in SPD2010 are put into the
testing set. So there are 80 fingerprints in our training set and 750 in the testing set.

The performance of singular point detection method is evaluated according to the
instructions from [36] and [5], summarized as follows:

• A singular point with coordinate (x, y) and type t (t = 1 for core and t = 2 for
delta) is represented by (x, y, t). For a ground truth singular point, (x0, y0, t0), if a
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detected singular point (x, y, t), satisfies (t = t0) and
√

(x− x0)2 + (y − y0)2 < δ
(termed ”allowed distance error”, δ = 10 in SPD2010), it is said to be truly detected
and, otherwise, it is called a miss.

• The detection rate is defined as the ratio of truly detected singular points to all
ground truth singular points.

• The miss rate is defined as the ratio of the number of missed singular points to
the number of all ground truth singular points.

• The false alarm rate is defined as the number of falsely detected singular points
versus the number of all ground truth singular points.

• If all singular points are detected and there are no spurious singular points in a
fingerprint, the fingerprint is considered to be correctly detected.

All output results have been generated on a PC with Intel(R) Core(TM) Processor
(i5-3470, 3.2 GHz), 4 GB of RAM, implemented in Matlab language. The preprocessing
steps like segmentation and orientation field estimation are implemented directly by using
the public source codes [31] which follows the basic algorithm in [23].

We use the training set to tune the parameters of our algorithm. There are mainly
4 parameters in our algorithm: the length d of one walking step, the threshold Tδ for
stopping the walking process, the radius R of the neighborhood of the candidate singular
point and the number n of the chosen starting points. A grid search for theses parameters
is applied. To avoid overfitting, we collect all values which make the correctly detected
rate larger than 90% of the highest rate. when R = 16 the performance remains in a
higher level, so we choose R = 16. Then for different n, the times of achieving higher
performance at (d, Tδ) are draw in Fig. 9a and hence (d, Tδ) = (7, 2) is chosen. When
R = 16, d = 7 and Tδ = 2, the performance varying with n is shown in Fig. 9b. After
making a tradeoff between corrected detected rate and processing time, we set n = 2.
Fig. 9b also indicates when n ≤ 2 the correctly detected rate remains relatively stable,
which implies the efficiency is an intrinsic property of the proposed algorithm.

4.2. Comparison with Existing Methods

The walking algorithm is compared with three state-of-the-art methods: Poincaré
index method [6], complex filter method [18] and angle matching index combined with
convergence index filter (AMF-based, also a model-based method) method [12]. The
Poincaré index method uses a square curve with length 25 pixels as the integrating path,
which is proved optimal by Hong and Jain [37]. The fingerprint foreground is divided
into non-overlapping blocks with block size 3×3 pixels, only the Poincaré index of center
pixel in each block is calculated. The postprocessing steps are: 1) removing the cores or
deltas who are too close to the background (the distance is smaller than 16 pixels); 2)
if a delta is too close to a core (the distance between them is smaller than 12 pixels),
remove both of them; and 3) in a very small region (a circular region with a radius of 12
pixels), if there are more than one core or delta, an average core or delta is computed
instead.

Since the walking algorithm is designed to be fast, not too accurate. The other
methods can be more accurate but substantially time-consuming because they can not
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Figure 9: Performance of the walking algorithm with different parameters on the training
set. (a) Times of achieving higher performance for different n at (d, Tδ). (b) Performance
varying with n when d = 7 and Tδ = 2.

Table 1: Performance of state-of-the-art methods, walking algorithm and combined meth-
ods on the testing set. CD: correctly detected rate.

Algorithm CD(%)
Detection Miss rate False alarm Ave.
rate (%) (%) rate (%) Time

cores deltas cores deltas cores deltas (ms)

AMF-based [12] 47.20 61.56 72.01 38.44 27.99 11.38 3.80 8616.6
Complex filter [18] 42.40 56.53 75.27 43.47 24.73 9.10 26.09 119.5
Poincaré index [6] 32.67 64.67 72.28 35.33 27.72 58.68 103.8 101.6

Walking 43.33 54.85 69.84 45.15 30.16 4.91 6.79 12.2
Walking+PI 46.13 58.68 69.84 41.32 30.16 4.67 6.79 14.4

Walking+AMF 46.80 59.52 69.84 40.48 30.16 4.67 6.79 173.9

avoid investigating each pixel or block in the foreground. Hence we can take a trade
off between accuracy and efficiency by combining our walking algorithm and the other
accurate methods. We use the walking algorithm to detect all singular points, then
in the local area (a square region with side length 32 pixels) of each singular point,
another accurate method (Poincaré index or AMF-based method in our experiment) is
utilized to refine the position of the singular point. If no singular point can be found
by Poincaré index or AMF-based method, the corresponding singular point detected by
walking algorithm is removed. As the walking algorithm has been already accurate for
detecting deltas, we do not refine the position of deltas.

Table 1 shows the effectiveness and average processing time (excluding the time of
estimating orientation field) of complex filter method, Poincaré index method, AMF-
based method and our walking algorithms. Our walking algorithm costs 12.2ms in
average to detect all singular points in a fingerprint image, while the existing methods
spend about 8 times or even 700 times more than ours. The proposed algorithm has a low
false alarm rate but the correctly detected rate and miss rate are not so superior. This
result validates the above statement: the walking algorithm is designed to be fast, but
not too accurate. By combing the other methods, the accuracies (evaluated by correctly
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Table 2: Performance of state-of-the-art methods, walking algorithm and combined meth-
ods on the subsets of FVC datasets. CD: correctly detected rate.

Algorithm CD(%)
Detection Miss rate False alarm
rate (%) (%) rate (%)

cores deltas cores deltas cores deltas

AMF-based [12] 62.00 76.90 81.08 23.10 18.92 9.01 2.03
Complex filter [18] 59.33 73.52 85.14 26.48 14.86 5.92 31.08
Poincaré index [6] 38.00 82.54 83.11 17.46 16.89 71.27 143.24

Walking 59.00 69.86 77.03 30.14 22.97 1.13 6.08
Walking+PI 62.00 72.96 77.03 27.04 22.97 0.56 6.08

Walking+AMF 62.67 73.52 77.03 26.48 22.97 0.56 6.08

Table 3: Scores of different methods evaluated by best-take-all protocol.

Methods Scores Methods Scores

AMF-based [12] 213 Walking 187
Complex filter [18] 196 Walking+PI 243
Poincaré index [6] 299 Walking+AMF 286

detected rate and miss rate) of walking+PI and walking+AMF method approximate that
of AMF-based method which is the most accurate among these three existing methods.
The walking+PI method uses about 2ms to exchange 3% improvement in the correctly
detected rate, so it has the best performance in general. Table 2 shows the effectiveness
of different methods on the subsets of FVC datasets where our proposed Walking+AMF
method outperforms the others in terms of correctly detected rate.

We also report the performance of different methods by using best-take-all protocol.
Concretely, for each ground truth of singular point, if the singular point detected by
method A is nearest to the ground truth, method A gets one score and the others get
zero. The results are shown in Table 3, which indicates the Poincaré index method has
the highest score followed by our combined methods.

Furthermore, the allowed distance error δ (the default value in SPD2010 is 10 pixels)
can be varied with different applications. The correctly detected rates of different meth-
ods varying with δ are plotted in Fig. 10. To be concrete, Fig. 10a illustrates the absolute
values of correctly detected rates of existing methods and the walking algorithm. When
δ ≥ 14 the walking algorithm approaches the AMF-based method and when δ > 26 our
algorithm achieves the highest correctly detected rate. As the curves of the AMF-based
method, walking algorithm and combined methods (walking+PI and walking+AMF) are
very close to each other, we draw the relative correctly detected rate curves with respect
to AMF-based method in Fig. 10b to sharpen the difference between them. It shows
the combined methods outperform the AMF-based method in general. Therefore, we
recommend our walking algorithm for real-time applications with larger accuracy toler-
ance, our walking+AMF method for applications which care more about accuracy and
our walking+PI method for applications requiring both accuracy and efficiency.

There’s no doubt that a better estimation of orientation field will improve the per-
formance of the walking algorithm. In our work the gradient-based method [31] is used
to estimate the pixel-wise orientation field. But its performance degrades quickly for im-
ages with low quality and thus affects the followed singular points detection process. To
compare the impacts of orientation fields with different quality, we implement the MCO
method [30] which is more robust to noise to estimate a block-wise orientation field with
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Figure 10: Performance comparison of different methods.

block size 8 × 8. The results illustrated in Fig. 11 validate that a better estimation of
orientation field will improve the performance of the proposed walking algorithm and so
it is with other singular point detection methods.

5. Conclusions

This paper proposed a novel fast algorithm which can directly walk to the singular
points, succeeding to avoid scanning the fingerprint image. By analysing the orienta-
tion field generated by Zero-pole Model and that estimated from real fingerprint image,
walking directions and WDFs are designed and derived from the real fingerprint orienta-
tion field. Then on WDFs we can rapidly walk to singular points following the walking
directions. Besides the efficiency, our walking algorithm is quite easy to be implement-
ed and can deal with large rotated fingerprint images. It can also be combined with
state-of-the-art method to improve the accuracy: we can rapidly walk to a singular point
and then fine-tune the location of the singular point using the complicated process pro-
posed by existing scanning-based method. Experimental results on SPD2010 datasets
and subset of FVC databases validated the amazing efficiency of the walking algorithm
and the comparable accuracy. We believe the walking algorithm can be used in real
time Automatic Fingerprint Identification System (AFIS), including large scale AFIS
and embedded AFIS.

Future works include: 1) designing a heuristic function for starting points selection
according to the relation between cores and deltas, and 2) designing more effective com-
bination way to improve the accuracy of the walking algorithm.
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Figure 11: Performance of the walking algorithm using the orientation fields estimated
by gradient-based method [31] (second column) and MCO method [30] (third column).
The ground truth and detected cores are marked with “⃝” and “�” (“×”)
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