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Abstract—Deep clustering gains superior performance than conventional clustering by jointly performing feature learning and cluster

assignment. Although numerous deep clustering algorithms have emerged in various applications, most of them fail to learn robust

cluster-oriented features which in turn hurts the final clustering performance. To solve this problem, we propose a two-stage deep

clustering algorithm by incorporating data augmentation and self-paced learning. Specifically, in the first stage, we learn robust features

by training an autoencoder with examples that are augmented by random shifting and rotating the given clean examples. Then, in the

second stage, we encourage the learned features to be cluster-oriented by alternatively finetuning the encoder with the augmented

examples and updating the cluster assignments of the clean examples. During finetuning the encoder, the target of each augmented

example in the loss function is the center of the cluster to which the clean example is assigned. The targets may be computed

incorrectly, and the examples with incorrect targets could mislead the encoder network. To stabilize the network training, we select

most confident examples in each iteration by utilizing the adaptive self-paced learning. Extensive experiments validate that our

algorithm outperforms the state of the arts on four image datasets.

Index Terms—Deep clustering, self-paced learning, data augmentation, unsupervised feature learning

Ç

1 INTRODUCTION

CLUSTERING has been intensively studied in the data
mining and machine learning community. Conven-

tional clustering algorithms such as k-means [1], Gaussian
Mixture Model (GMM) [2], and hierarchical clustering [3]
generally group data on handcrafted features according to
intrinsic similarity. It is well known that these features are
designed for general purpose and may not be suitable for a
specific task. Some clustering algorithms, including spectral
clustering (SC) [4] and kernel k-means [5], [6], transform
data into a new feature space in which the clustering task
becomes much easier. However, these methods generally
have a limited capacity for transformation or suffer from
high computational complexity.

With the development of deep learning, Deep Neural
Networks (DNNs) have shown amazing power of highly

nonlinear transformation (or feature learning). Recently,
some researches [7], [8], [9], [10], [11], [12] adopt DNNs to
perform clustering, showing dramatic improvement on
clustering performance. The basic idea is that good feature
helps produce good clustering result, and the latter in turn
guides DNNs to learn the better feature. These two pro-
cesses are seamlessly connected to achieve superior perfor-
mance. The resultant feature is task-specific, i.e., more
suitable for clustering. In this paper, we refer to as Deep
Clustering the algorithm that jointly performs feature learn-
ing and clustering by DNNs.

Most existing deep clustering algorithms tune the par-
ameters of the DNN by using a loss function defined by the
cluster centers and assignments, which are generally obtained
based on the outputs of the DNN in the last iteration. How-
ever, we observe that thesemethods do not explicitly consider
the effect of marginal examples on the network training. As
the goal of the DNN is to learn features that are more suitable
for clustering, the examples near cluster boundaries may not
provide convincing guidance. This is in contrast to supervised
learning where all target labels are given beforehand and
hence all examples can give trustworthy supervisory signals.
Actually, marginal examples in supervised learning play a
more important role in searching class boundaries.We empir-
ically validate that, in deep clustering, unreliable examples
near cluster boundaries could confuse or even mislead the
training process of the DNN, leading to unsatisfying perfor-
mance. On the other hand, these clustering algorithms
also overlook the technique of data augmentation which has
beenwidely employed in supervised deep learningmodels to
improve the generalization. Neglecting these two ingredients
leads to the failure of leaning robust cluster-oriented features.
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In this paper, we propose an Adaptive Self-Paced deep
Clustering with Data Augmentation (ASPC-DA) algorithm
which is comprised of two stages: pretraining and finetun-
ing. In the stage of pretraining, we train an autoencoder
with augmented data by minimizing the reconstruction
loss. As we know, the autoencoder can transform data from
relatively high dimensional and sparse space to low dimen-
sional and compact representation space. We use aug-
mented data to enhance the smoothness of the manifold on
which the learned representations lie. Then in the second
stage, we finetune the encoder (feature extractor) by using a
clustering loss defined as the within-cluster sum of squares.
To stabilize the training process, we adopt adaptive self-
paced learning to select “easy” (near cluster centers) exam-
ples as training set and gradually add harder examples. Dif-
ferent from typical self-paced learning, our adaptive variant
is free of hyper-parameters and always keeps marginal
examples out of training. We also adopt the same type of
data augmentation as in the pretraining stage to further
facilitate the feature learning. Our experiments show a great
competitive edge over state-of-the-art clustering algorithms
on various datasets. The main contributions of this paper
are highlighted as follows:

� To learn robust cluster-oriented features, we propose
a simple but effective deep clustering model that
incorporates self-paced learning and data augmenta-
tion. To the best of our knowledge, this is the first
work to introduce these two well studied techniques
in supervised learning into unsupervised deep clus-
tering field.

� We derive an adaptive self-paced learning algorithm
without extra hyper-parameter. By using the adap-
tive self-paced learning, our model can eliminate the
negative effect of the examples near cluster bound-
aries in the process of feature learning.

� Extensive experiments are conducted and the results
validate the effectiveness of our ASPC-DA algo-
rithm. The ablation study shows how the adaptive
self-paced learning and data augmentation affect the
proposed deep clustering algorithm, and provides
possible ways to extend existing deep clustering
algorithms.

The rest of this paper is organized as follows: Section 2
presents a review of related work. Section 3 is devoted to
our ASPC-DA algorithm. Extensive experiments are con-
ducted in Section 4 to support our claims. Some variants are
proposed and validated based on our ASPC-DA in Section 5.
We finish the paper with the conclusion and potential future
work in Section 6.

2 RELATED WORK

Our work falls into the category of deep clustering and
incorporates self-paced learning and data augmentation. To
facilitate the description of our algorithm, we shall review
existing deep clustering algorithms, self-paced learning,
and data augmentation techniques in turn.

2.1 Deep Clustering

Deep clustering represents a family of clustering algorithms
that adopt deep neural networks to learn cluster-oriented

features. As shown in Fig. 1, their loss functions are typi-
cally comprised of network loss Ln and clustering loss Lc

where the network loss is used to learn feasible features and
the clustering loss encourages feature points to form
groups. The network loss can be the reconstruction loss of
an autoencoder (AE), the variational loss of a variational
autoencoder (VAE) [13], or the adversarial loss of a genera-
tive adversarial network (GAN) [14]. And the clustering
loss can be the loss of any existing clustering algorithms like
k-means [1], Gaussian Mixture Model (GMM) [2], and hier-
archical clustering [3]. Some work designs a new clustering
loss to incorporate the function of network loss, in which
case the network loss can be removed. We refer to as Clus-
tering DNN (CDNN) the network that is trained only by
clustering loss Lc. Based on the type of DNN, existing deep
clustering algorithms can be divided into four categories:
AE-based, VAE-based, GAN-based, and CDNN-based deep
clustering.

AE-based deep clustering has been extensively studied.
They directly incorporate the prior knowledge that helps
perform clustering into the objective function of an autoen-
coder. For example, in [12], [15], [16], [17], the authors
choose the objective of k-means as the clustering loss Lc.
Beyond the hard-assignment k-means loss, Jabi et al. [18]
further propose a soft and regularized deep k-means algo-
rithm. Peng et al. [8] incorporate a prior sparsity informa-
tion into the hidden representation of autoencoders, in
order to be adaptive to the local and global subspace struc-
ture simultaneously. Dizaji et al. [10] and Guo et al. [11]
both borrow the objective of DEC [7] as the clustering loss,
but the former utilizes a convolutional autoencoder and the
latter uses a fully connected autoencoder. Ji et al. [19] pro-
pose to incorporate the self-expressiveness property of sub-
space clustering into the middle layer of a fully connected
autoencoder. The advantage of AE-based deep clustering is
that existing shallow clustering algorithms and regulariza-
tions can be easily adopted to work with the training of
autoencoders. But a hyper-parameter has to be introduced
to balance the reconstruction loss and clustering loss.

VAE-based clustering algorithms enforce the latent code to
followa predefineddistributionwhich candescribe the cluster
structure. Jiang et al. [20] model the latent code by Gaussian
mixture model. After maximizing the evidence lower bound,
the cluster assignment is inferred by the learnedGMMmodel.
Dilokthanakul et al. [21] propose a similar formulation but
their results are worse than Jiang et al. [20] empirically. This
kind of algorithms are able to generate realistic images in addi-
tion to outputting clustering results. However, they suffer
fromhigh computational complexity.

Fig. 1. The basic framework of deep clustering algorithms. The network
loss Ln enforces the learned features feasible and clustering loss Lc

makes it cluster-friendly. Ln can be removed if Lc is designed to absorb
the function of Ln.
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GAN-based algorithms share the same idea with VAE-
based algorithms. As a typical example, InfoGAN [22] maxi-
mizes the mutual information between a fixed small subset
of the GAN’s noise variables and the observations where
the noise variables are sampled from categorical distribu-
tion. ClusterGAN [23] uses discrete-continuous mixtures
for sampling noise variables of a GAN to enable the cluster-
ing in latent space. DASC [24] incorporates the self-expres-
siveness property of subspace clustering into an adversarial
variational autoencoder. Same with [19], DASC is not scal-
able to large scale dataset. Yu and Zhou [25] introduce a
GAN Mixture Model (GANMM) aiming to extend the
Gaussian Mixture Model (GMM). GAN-based algorithms
have the same problems of GANs, e.g., hard to converge
and mode collapse.

The last category of deep clustering, CDNN-based algo-
rithms, explicitly define a loss which is used as the objective
of both clustering model and DNNs. Yang et al. [26] pro-
pose a recurrent framework with a unified weighted triplet
loss which integrates clustering and feature learning pro-
cesses into a single model. Effective as the algorithm is, it is
quite time-consuming due to its recurrent process. Xie
et al. [7] propose a Deep Embedded Clustering (DEC) algo-
rithm by defining a KL divergence between distributions P
and Q, where Q is the distribution of soft labels measured
by Student’s t-distribution and P is the target distribution
derived from Q. Minimizing the KL divergence can obtain
cluster-oriented features and cluster assignments simulta-
neously. Then Li et al. [27] extend DEC by incorporating
convolutional neural networks and modifying the normali-
zation of the target distribution. Peng et al. [9] define the
clustering loss as the discrepancy between pair-wise exam-
ple-centers distributions. They assume that the distribution
between a given example and cluster centers is invariant to
different distance metrics on the manifold. Based on exist-
ing deep clustering frameworks, Gu�erin and Boots [28]
replace singular CNN with multiple pretrained CNNs to
extract features. Lin et al. [29] propose a density clustering
algorithm employed on pretrained deep features to cluster
unconstrained face images. Caron et al. [30], [31] directly
use the loss function of k-means to train a convolutional net-
work and achieve promising clustering performance on
large scale dataset. This category has a simple and graceful
objective which, however, needs to be carefully designed.

However, none of these deep clustering algorithms have
explicitly considered the effect of marginal examples. We
observe that examples far away from cluster centers are
harmful to the training of DNNs. We solve this problem by
incorporating adaptive self-paced learning where examples
close to cluster borders are totally excluded.

2.2 Self-Paced Learning

Self-paced learning [32] simulates the procedure of human
learning: from easy to hard. Given some examples of a new
task, we tend to first select easiest examples to learn basic
knowledge. After the knowledge about the task improved,
we can collect harder examples to acquire more knowledge
gradually. At the end of this progress, we may acquire all
the knowledge about the task. This strategy of learning is
deemed to be more effective. The key problem is how to

define “easiness”. Depending on current knowledge we
have, the closer the answer we give gets to the true answer,
the easier the example (or problem) should be.

In machine learning problems, the value of loss func-
tion serves as the measure of “easiness”. How easy
examples should be used for training is controlled by a thresh-
old �. Formally, given training examples D ¼ fðx1; y1Þ;
ðx2; y2Þ; . . . ; ðxn; ynÞg and learning model f with parameters
w, the traditional machine learning problem is

min
w

Xn
i¼1

LðfwðxiÞ; yiÞ: (1)

The the objective of self-paced learning is

min
w;v

Xn
i¼1

viLðfwðxiÞ; yiÞ þ gð�; viÞ;

s:t: vi 2 ½0; 1�;
(2)

where v ¼ ½v1; v2; . . . ; vn�> are weights of examples and
gð�; viÞ is called self-paced regularization term. The w and v
can be optimized using Alternative Search Strategy (ASS).
Consider the simple hard-weighting self-paced learning
where gð�; viÞ ¼ ��vi and vi 2 f0; 1g, i.e.,

min
w;v

Xn
i¼1

viLðfwðxiÞ; yiÞ � �vi;

s:t: vi 2 f0; 1g:
(3)

Given example weights v, the minimization over w is a
weighted loss minimization problem. And when the model
parameter w is fixed, the optimal vi is determined by the
closed form

vi ¼ 1; if Li < �;
0; otherwise.

�
(4)

Self-paced learning has been successfully used in various
applications. Kumar et al. [32] demonstrate that self-paced
learning algorithm outperforms the state-of-the-art methods
for learning a latent structural SVM on 4 applications: object
localization, noun phrase coreference, motif finding and
handwritten digit recognition. Then Jiang et al. [33] propose
linear self-paced learning for zero-example multimedia
search. Mixture self-paced learning algorithm is introduced
by Xu et al. [34] to improve the optimization of multi-view
clustering problem. Jiang et al. [35] incorporate diversity
information by adding a l2;1-norm regularization on exam-
ple weights v. Fan et al. [36] study a group of self-paced
implicit regularization term that is deduced from robust
loss function.

Self-paced learning algorithms can not avoid searching
the best values for hyper-parameters � and the step size d

that controls the amount of increasing � at each iteration.
In unsupervised learning, hyper-parameters are hard to
set. Maybe that’s why none of existing work, to the best
of our knowledge, incorporates self-paced learning to
deep clustering framework. We fill this gap by proposing
an adaptive self-paced learning variant which is hyper-
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parameter free and is easy to be plugged into deep clus-
tering models.

2.3 Data Augmentation

As we all know, DNNs are easy to overfit the data which can
be solved by resorting to acquiring more training data,
restricting the capacity of DNNs, or early stopping. Data
augmentation is an effectiveway to expanding training data-
sets. For a given image example, we transform it by random
rotating, shifting, cropping, shearing, etc. before feeding it to
the network. In this way, DNNs have to fit more examples
than the original dataset. Data augmentation is in fact intro-
ducing the prior knowledge that transforming an image in
appropriate ways does not change its identity. In most deep
learning models, e.g., AlexNet [37], ResNet [38], and Cap-
sNet [39], data augmentation plays an important role to
improve the generalization. However, in unsupervised clus-
ter analysis, data augmentation has been overlooked, to the
best of our knowledge. We give a simple and intuitive solu-
tion to bring data augmentation to deep clustering problem
and validate the effectiveness of this solution.

3 ADAPTIVE SELF-PACED DEEP CLUSTERING WITH

DATA AUGMENTATION

In this section, we first introduce the basic two-stage deep
clustering model in which a new clustering loss is defined.
Then in Section 3.2, we develop an adaptive self-paced
learning algorithm to stabilize the training of the proposed
deep clustering model by excluding the examples near clus-
ter boundaries. Furthermore, we incorporate data augmen-
tation technique into both of stages of the basic model in
Section 3.3. After introducing these two techniques, we
obtain our final algorithm termed Adaptive Self-Paced deep
Clustering with Data Augmentation (ASPC-DA). Finally,

we elaborate the optimization procedure for our ASPC-DA
in Section 3.4. We also give an example to demonstrate how
our algorithm works in practice in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2019.2911833.
The whole structure of our ASPC-DA is illustrated in Fig. 2.

3.1 Basic Deep Clustering Model

Consider a dataset with n examples X ¼ fxi 2 RDgni¼1. An
encoder network fwð�Þ transforms each example xi 2 RD to
zi 2 Rd and a decoder network huð�Þ transforms zi back to
x0i 2 RD. The number of clustersK is given as a priori knowl-
edge and the center of the jth cluster is represented by
mj 2 Rd. Define cluster matrix as M ¼ ½m1;m2; . . . ;mK � 2
Rd�K . Let si 2 f0; 1gK denote the cluster index assigned to the
example zi. Then yi ¼ Msi indicates the center of the cluster
towhich the example zi belongs.

We aim to find a good neural network (feature extractor)
fwð�Þ which enables the transformed points fzigni¼1 to be
more suitable for clustering. To this end, we propose a two-
stage deep clustering model to train fwð�Þ.

3.1.1 Pretraining

In the first stage, we stack a decoder network huð�Þ on the
top of fwð�Þ to build an autoencoder which is trained by
minimizing the reconstruction loss

Lr ¼ 1

n

Xn
i¼1

kxi � huðfwðxiÞÞk22: (5)

The resulting transformed point zi ¼ fwðxiÞ is in a much
lower dimensional feature space than xi. So the encoder can
serve as a dimensionality reduction (DR) method and is
expected to be more powerful than other DR methods like
Principal Component Analysis (PCA), Isomap, and Locally

Fig. 2. The proposed ASPC-DA algorithm. The solid line with the filled arrow indicates the data flow in the forwarding path and the dash-dot line with
unfilled arrow represents the backpropagation. (a) The stage of pretraining. The fully connected autoencoder is trained by minimizing the Mean
Squared Error (MSE) loss Lr between the input augmented examples x̂i and output reconstructed ones huðfwðx̂iÞÞ. (b) The stage of finetuning. We
first excerpt the encoder from the pretrained autoencoder and obtain the feature points zi of the input clean examples xi. The clean features zi are
fed to the k-means algorithm to determine the partitioning, i.e., cluster centers M. Then, we alternatively update w;v, and the cluster assignment si.
We use the augmented examples x̂i to finetune the encoder and clean examples xi to update the cluster assignment si.
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Linear Embedding (LLE). That is, the zi is a low dimen-
sional and compact representation for the example xi. Per-
forming clustering on fzigni¼1 is more effective and efficient.
But the training of the autoencoder is not task-specific (or
clustering-specific), thus the feature point zi is not necessar-
ily suitable for clustering. Our solution is to further finetune
the encoder by using a clustering loss.

3.1.2 Finetuning

After pretraining, we propose to finetune the network by
using the following objective:

min
w;s

1

n

Xn
i¼1

kfwðxiÞ �Msik22;

s:t: si 2 f0; 1gK; 1>si ¼ 1;

(6)

where M 2 Rd�K is a matrix comprising all cluster centers,
si is the cluster assignment of the ith example, and 1 is a col-
umn vector with every element being 1. As we can notice,
this objective is identical to the objective of k-means algo-
rithm except for the parameters to optimize. The objective
of k-means is

min
M;s

1

n

Xn
i¼1

kfwðxiÞ �Msik22;

s:t: si 2 f0; 1gK; 1>si ¼ 1;

(7)

which separates data points by alternatively updating clus-
ter centers M and assignments s, i.e., by gradually adjusting
the decision boundaries as shown from Figs. 3a to 3b. We
shall use k-means to initialize the cluster centers M and
then optimize (6). The main reason of fixing M in (6) after
initialization is to avoid the degenerate solution in which all
examples converge to one point and the objective equals
zero. Once M is fixed, decision boundaries are also deter-
mined. Because decision boundaries are perpendicular
bisectors of adjacent cluster centers. Then it will be impossi-
ble to squash all examples together by optimizing (6) (see
from Figs. 3b to 3c). We shall call this deep clustering model
BasicDC.

We can alternatively optimize (6) regarding w and s.
When s is fixed, (7) degrades to

minw
1

n

Xn
i¼1

kfwðxiÞ � yik22; (8)

where yi ¼ Msi is the center of the cluster that example xi

belongs to in feature space. This objective can be interpreted
as the objective of supervised learning for the DNN. The tar-
get label of example xi is its cluster center yi. So minimizing
(8) forces examples in feature space to scatter in groups.
Note that squashing examples in the same cluster does not
guarantee that these examples remain in the same cluster
forever, since the neural network fw has to model the struc-
ture of all clusters.

On the other hand, the target yi of the example xi is
determined by using feature points z in the last iteration.
Therefore the target yi is not 100 percent correct, especially
for examples near cluster borders. This is in contrast to
supervised learning where targets y are given along with
examples x. The false target will misguide the training of
the neural network (see the point z0 in Fig. 3c). What
makes it worse is that the gradient of (8) with respect to
fwðxiÞ is proportional to ðfwðxiÞ � yiÞ. That is, the farther
away the feature point is from its cluster center, the larger
gradient will be fed back to the network. This is obviously
not what we want. We would rather only use the target
with high confidence to tune our network. We accomp-
lish this goal by deriving an adaptive self-paced learning
algorithm.

3.2 Incorporating Adaptive Self-Paced Learning

To stabilize the optimization of (8), we incorporate self-
paced learning to select the most confident examples gradu-
ally. Substituting (8) into (3) to get the objective

min
v;w

1

n

Xn
i¼1

vikfwðxiÞ � yik22 � �vi; s:t: vi 2 f0; 1g; (9)

where v ¼ ½v1; v2; . . . ; vn�> are weights of training examples,
and � is the age parameter which controls the number of
selected examples.

As introduced in Section 2.2, typical self-paced learning
selects all examples into training set at the end of training.
But in our problem, targets of examples on cluster borders
are not reliable. Therefore, we shall prevent the self-paced

Fig. 3. The process of finetuning stage. Circles “o” indicate examples and crosses “�” represent cluster centers. Different clusters are rendered with
different colors. Solid lines indicate decision boundaries which are perpendicular bisectors of adjacent cluster centers. (a) Random initialization of
the cluster centers. (b) The result of k-means. It determines the best positions of cluster centers as well as the decision boundaries. (c) Training the
encoder with cluster centers (as well as the decision boundaries) fixed. The examples in the same cluster are pulled closer to the cluster center in
the feature space. But example z0 near boundary is easily pulled towards the incorrect cluster. (d) Different with (b), training the encoder by using reli-
able examples (those in the dashed circles) is more meaningful.
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learning from selecting examples near boundaries, even at the
end of training. Another drawback of traditional self-paced
learning is introducing two additional hyper-parameters: the
age parameter � for controlling the learning pace and step
size d for increasing �. Typically � is set to themedian of losses
at beginning. Then � increases by a step d every several itera-
tions. Since losses of examples are also decreasing during
training, step size d is difficult to choose.

Based on the above analysis, we propose to set � accord-
ing to the statistics of losses during training

� ¼ mðLtÞ þ t

T
sðLtÞ; (10)

where Lt denotes all losses in the tth iteration, T is the num-
ber of maximal iterations, mð�Þ and sð�Þ are average and
standard deviation of losses. As T is determined by the
deep learning model, the � now is adaptive to the losses of
examples, not an independent hyper-parameter any more.
Fig. 3d shows examples selected by using the adaptive self-
paced learning at the beginning.

Substituting yi ¼ Msi into (9), we get the objective of
Adaptive Self-Paced deep Clustering algorithm (ASPC)

min
v;w

1

n

Xn
i¼1

vikfwðxiÞ �Msik22 � �vi;

s:t: vi 2 f0; 1g;
(11)

and

min
s

1

n

Xn
i¼1

kfwðxiÞ �Msik22;

s:t: si 2 f0; 1gK; 1>si ¼ 1;

(12)

where � is computed by (10).

3.3 Incorporating Data Augmentation

Since data augmentation, such as random rotation, shifting,
and cropping, has been widely employed in supervised
deep learning community, we shall attempt to explore it in
unsupervised learning too. In this section, we give a direct
and intuitive way of incorporating data augmentation to
both of stages of the proposed deep clustering algorithm.
For the sake of convenience, we define a mapping T to rep-
resent data augmentation function which can be any combi-
nation of random rotation, shifting, cropping, wrapping,
etc. Then the augmented example is x̂i ¼ T ðxiÞ.

3.3.1 Pretraining Stage

We directly replace the clean example xi in (5) with the aug-
mented one x̂i to obtain the reconstruction loss

Lr ¼ 1

n

Xn
i¼1

kx̂i � huðfwðx̂iÞÞk22: (13)

Since autoencoders take the input examples as targets, this
form is analogous to supervised learning. Thus it is intuitive
to adopting (5), (6), (7), (8), (9), (10), (11), (12), and (13). Also
note the fact that augmented examples share the same mani-
fold with original examples. Ideally, the manifold learned by
using the augmented examples should be more continuous

and smooth than that learned by clean examples. That is to
say, incorporating data augmentation can help the autoen-
coder learnmore representative and robust features.

3.3.2 Finetuning Stage

In (11) and (12), there are three parameters, w; v; s, corre-
sponding to feature learning, reliable examples selection,
and cluster assignment, respectively. As our ultimate goal is
to improve the clustering performance, we shall compute
assignments s for clean examples instead of augmented
ones. Once s is computed, the target for the example xi will
be yi ¼ Msi. As same as in supervised deep learning, the
clean example xi should share the target yi with the aug-
mented counterpart x̂i. So feature learning (updating w)
can use augmented data. In summary, we shall utilize the
augmented examples only in (11). The final objectives of our
Adaptive Self-Paced deep Clustering with Data Augmenta-
tion (ASPC-DA) are (12) and

min
v;w

1

n

Xn
i¼1

vikfwðx̂iÞ �Msik22 � �vi;

s:t: vi 2 f0; 1g;
(14)

where � is governed by (10). Note that the only difference
between (11) and (14) is xi versus x̂i.

3.4 Optimization

The pretraining stage can be directly optimized by using
SGD and backpropagation, so we only focus on the finetun-
ing stage. We alternatively optimize (12) and (14) with
respect to s; v;w.

3.4.1 Update s withw Fixed

When w is fixed in (12), we can immediately solve s in
closed form

sij ¼ 1; if j ¼ argminkkfwðxiÞ �mkk22;
0; otherwise,

�
(15)

where sij is the entry at the ith row jth column of s, and mk

is the kth column of M, i.e., the center of the kth cluster. Not
surprisingly, this solution is identical to k-means’.

3.4.2 Update v withw; s Fixed

When w; s is fixed in (14), the optimal v can be easily
obtained in closed form

vi ¼ 1; if kfwðx̂iÞ �Msik22 < �;
0; otherwise,

�
(16)

where � is computed by (10).

3.4.3 Updatew with v; s Fixed

With v; s fixed, (14) is simplified to

min
w

1

n

Xn
i¼1

vikfwðx̂iÞ �Msik22; (17)

which is consistent with supervised learning. Thus we can
resort to backpropagation and SGD.

GUO ET AL.: ADAPTIVE SELF-PACED DEEP CLUSTERINGWITH DATA AUGMENTATION 1685



3.4.4 Stopping Criterion

If the change of predicted cluster labels between two succes-
sive iterations is smaller than a threshold d, we will stop the
training. Formally, the stopping criterion is

1� 1

n

X
i;j

stijs
t�1
ij < d; (18)

where st�1
ij and stij are indicators for whether example xi

is assigned to the jth cluster at the ðt� 1Þth and tth
iteration, respectively. We empirically set d ¼ 0:001 in
our experiment. The whole algorithm is summarized in
Algorithm 1.

Algorithm 1. Adaptive Self-Paced Deep Clustering with
Data Augmentation (ASPC-DA)

Input: Dataset X; Augmentation mapping T ; Number of clus-
tersK; Stopping threshold d; Maximum iterations T .

Output: Cluster assignments s.
1: Initializew by minimizing (13) where x̂i ¼ T ðxiÞ;
2: Initialize M; s by deploying k-means on fwðxiÞ, i.e., the

output of the pretrained encoder;
3: for t ¼ 0 to T do
4: Update cluster assignments s by (15);
5: Update example weights v by (16);
6: Update network parametersw by optimizing (17);
7: if Stopping criterion (18) is met then
8: Stop training.
9: end if
10: end for

3.4.5 Time Complexity

Suppose the maximum number of neurons in each layer
of the autoencoder is ~D and the maximum epochs for
pretraining is T1, then the time complexity of the pre-
training stage is OðT1n ~D2Þ (line 1 of Algorithm 1). The
k-means (line 2) is OðT2ndKÞ where T2 is the maxi-
mum iterations. The time complexity of updating s; v;w
(line 4-6) is OðTndþ Tn ~D2 þ TndKÞ. So the total time
of Algorithm 1 is OðT1n ~D2 þ T2ndK þ Tn ~D2 þ TndKþ
TndÞ ¼ OððT1 þ T Þn ~D2 þ ðT2 þ T ÞndKÞ which is linear to
the number of examples n. Therefore, the proposed ASPC-
DA algorithm is theoretically efficient and scalable.

4 EXPERIMENTS

We conduct extensive experiments to validate the effective-
ness of the proposed ASPC-DA algorithm. After introducing
the basic experimental settings, we present the comparison
with state-of-the-art clustering methods. Then we conduct
ablation study to explore the effect of each part of our

ASPC-DA. At last we provide sensitivity analysis for some
hyper-parameters.

4.1 Experimental Settings

All experiments are conducted on a PC with Intel Core i7-
7700 CPU @ 4.00 GHz and a NVIDIA GTX 1080Ti GPU.

4.1.1 Datasets

We conduct experiments on four image datasets:

� MNIST-full: A dataset consisting of 10 handwritten
digits [40], total 70,000 examples. Each example is a
28x28 gray image.

� MNIST-test: A dataset that only contains the test set
of MNIST-full, with 10,000 examples.

� USPS1: A dataset contains 9,298 gray digit images
with size of 16x16 pixels divided into 10 categories.

� Fashion: A dataset of Zalando’s article images, con-
sisting of 70,000 examples each of which is a 28 x 28
gray image, divided into 10 classes [41].

The statistics of these datasets are summarized in Table 1.
All datasets are rescaled to [0,1] for each element before
being fed to clustering algorithms.

4.1.2 Baseline Methods

The proposed ASPC-DA is compared with both conventi-
onal shallow clustering algorithms and state-of-the-art deep
clustering. Shallow ones include k-means [1], normalized-cut
spectral clustering (SC) [42], locality preserving non-negative
matrix factorization (NMF-LP) [43], agglomerative clustering
(AC) [3], Gaussian mixture models (GMM) [2], and robust
continuous clustering (RCC) [44]. Deep clustering algorithms
include DeepCluster [30], [31], deep clustering networks
(DCN) [12], deep k-means (DKM) [17], deep embedded
clustering (DEC) [7], improved deep embedded clustering
(IDEC) [11], cascaded subspace clustering (CSC) [9], soft regu-
larized k-means (SR-k-means) [18], variational deep embed-
ding (VaDE) [20], clustering with GAN (ClusterGAN) [23],
joint unsupervised learning (JULE) [26], deep embedded reg-
ularized clustering (DEPICT) [10], discriminatively boos-
ted clustering (DBC) [27], and deep adaptive clustering
(DAC) [45]. We report the results by excerpting from the cor-
responding papers or by running their released code when
available.

4.1.3 Evaluation Metrics

We evaluate all clustering methods with clustering ACCu-
racy (ACC) and Normalized Mutual Information (NMI).
The ACC is defined as the best match between ground truth
y and predicted labels c

ACCðy; cÞ ¼ max
m

Pn
i¼1 1fyi ¼ gðciÞg

n
; (19)

where yi and ci are the ground truth and predicted label of
example xi respectively, and g is a one to one mapping from
predicted label to ground truth label. The best mapping can
be efficiently computed by the Hungarian algorithm [46].
Note that predicted label ci can be calculated according to

TABLE 1
Dataset Statistics

Dataset # Points # Classes Size Dimension

MNIST-full 70,000 10 28� 28 784
MNIST-test 10,000 10 28� 28 784
USPS 9,298 10 16� 16 256
Fashion 70,000 10 28� 28 784

1. http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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cluster assignment si, i.e., ci ¼ argmaxjsij. The NMI is
defined as

NMIðy; cÞ ¼ 2Iðy; cÞ
HðyÞ þHðcÞ ; (20)

where I and H are mutual information and entropy, respec-
tively. Both of ACC andNMI are in the range ½0; 1�. The higher
value corresponds to the better clustering performance.

4.1.4 Implementation Details

In the pretraining stage, the autoencoder is composed of eight
fully connected layers with dimensions D� 500� 500�
2000� 10� 2000� 500� 500�D, whereD is the dimension
of input examples. Except for the input, output, and embed-
ding (with 10 neurons) layers, all internal layers are activated
by ReLU [47]. The autoencoder is trained in an end-to-end
manner for 500 epochs by using SGD optimizer with learning
rate (lr) 1.0 and momentum 0.9. We do not employ tedious

layer-wise pretraining [48] or any other regularization techni-
ques likeDropout [49], BatchNormalization [50]. During fine-
tuning, the encoder has four layers with dimensions
D� 500� 500� 2000� 10. The maximum number of itera-
tions is set to T ¼ 100. In each iteration, we train the encoder
for one epoch using Adam [51] optimizer with initial learning
rate 0.0001. The batch size is fixed to 256. The threshold in
stopping criterion is d ¼ 0:001. The transform function T for
data augmentation is the combination of random rotation for
up to 10� and random shifting for up to

ffiffiffiffi
D

p
=10 (i.e., 10 percent

of the width or height of the input image) pixels in each direc-
tion. The input examples are represented as D-dimensional
vectors which will be reshaped to

ffiffiffiffi
D

p � ffiffiffiffi
D

p
matrices. Then

we can rotate and shift the matrices by using T . At last the
transformed matrices are flattened back to D-dimensional
vectors which can be fed to the autoencoder. A summary of
these hyper-parameters is listed in Table 2. We fix the above
settings over all datasets and avoid dataset specific tuning.
On each dataset, we run our algorithm for 5 times and report
the average result. Our implementation is based on Python
and Keras [52]. The source code is publicly available on
https://github.com/XifengGuo/ASPC-DA.

4.2 Comparisons with State-of-the-Art Methods

The clustering results of all methods are reported in Table 3.
As we can see, in most cases, deep clustering algorithms
(from DCN [12] to ASPC-DA) outperform shallow ones
(from k-means [1] to RCC [44]) by a large margin. Compari-
son among deep clustering algorithms validates the superi-
ority of algorithms using convolutional networks (from
ClusterGAN [23] to DAC [45]) over that using fully con-
nected networks (from DeepCluster [30] to VaDE [20]). But
our ASPC-DA algorithm achieves the best performance in
terms of all metrics on all datasets except ACC on Fashion.

TABLE 2
Summary of Some Key Hyper-Parameters Used in

Our ASPC-DA Algorithm

Stage Parameter Value

Pretraining Neurons ½500; 500; 2000; 10; 2000; 500; 500; D�
Optimizer SGD (lr=1.0, momentum=0.9)
Epochs 500
Batch size 256

Finetuning Neurons [500,500,2000,10]
Optimizer Adam (lr=0.0001)
Iterations T 100
Batch size 256
Threshold d 0.001
Mapping T Random shift

ffiffiffi
D

p
10 pixels & rotation 10�

TABLE 3
Clustering Performances of Different Algorithms in Terms of ACC and NMI

MNIST-full MNIST-test USPS Fashion

ACC NMI ACC NMI ACC NMI ACC NMI

k-means [1] 0.532 0.500 0.546 0.501 0.668 0.627 0.474 0.512
SC [42] 0.656 0.731 0.660 0.704 0.649 0.794 0.508 0.575
NMF-LP [43] 0.471 0.452 0.479 0.467 0.652 0.693 0.434 0.425
AC [3] 0.621 0.682 0.695 0.711 0.683 0.725 0.500 0.564
GMM [2] 0.433 0.366 0.540 0.493 0.551 0.530 0.556 0.557
RCC [44] – 0:893� – 0.828 – 0.742 – 0.614
DeepCluster [30] 0.797 0.661 0.854 0.713 0.562 0.540 0.542 0.510
DCN [12] 0:830� 0:810� 0.802 0.786 0.688 0.683 0.501 0.558
DKM [17] 0:840� 0:796� – – 0:757� 0:776� – –
DEC [7] 0.863 0.834 0.856 0.830 0.762 0.767 0.518 0.546
IDEC [11] 0:881� 0:867� 0.846 0.802 0:761� 0:785� 0.529 0.557
CSC [9] 0:872� 0:755� 0:865� 0:733� – – – –
SR-k-means [18] 0:939� 0:866� 0:863� 0:873� 0.901 0.912 0.507 0.548
VaDE [20] 0.945 0.876 0.287 0.287 0.566 0.512 0.578 0.630
ClusterGAN [23] 0:950� 0:890� – – – – 0:630� 0:640�
JULE [26] 0:964� 0:913� 0:961� 0:915� 0.950 0.913 0.563 0.608
DEPICT [10] 0:965� 0:917� 0:963� 0:915� 0.899 0.906 0.392 0.392
DBC [27] 0:964� 0:917� – – – – – –
DAC [45] 0:978� 0:935� – – – – – –
ASPC-DA 0.988 	 0.001 0.966 	 0.002 0.973 	 0.003 0.936 	 0.003 0.982 	 0.001 0.951 	 0.002 0.591 	 0.022 0.654 	 0.021

All results of baseline algorithms are reported by running their released code except the ones marked by (�) on top which are excerpted from the corresponding
paper. The mark “–” denotes that the result is unavailable from the paper or the code.
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The state-of-the-art performance on the most widely used
MNIST-full dataset is increased by our algorithm from 97.8
to 98.8 percent in terms of ACC and from 93.5 to 96.6 percent
regardingNMI.

It is worth emphasizing that our ASPC-DA algorithm
does not tune hyper-parameters for different datasets. This
consistent setting makes ASPC-DA easier be adapted to
new datasets. In contrast, DEC [7] introduces a hyper-
parameter to control the frequency of updating the target
distribution, which needs to be tuned for each dataset.
CSC [9] tunes 4 hyper-parameters for each dataset as shown
in Table 1 in their paper. DCN [12] designs an individual
network structure for each dataset and tunes 4 additional
parameters.

In Table 4, we report the running time of different algo-
rithms. Note that the results of some algorithms are absent
due to that their codes are not publicly available. As can be
seen, some conventional clustering algorithms (from
k-means [1] to NMF-LP [43]) are efficient but ineffective.
Our ASPC-DA is computationally comparable to or even
better than other deep clustering algorithms (from Deep-
Cluster [30] to DEPICT [10]). Especially, JULE [26] and
DEPICT [10] spend up to ten times as long as our ASPC-
DA. To conclude, in addition to achieving the state-of-the-
art clustering accuracy, our ASPC-DA algorithm remains
high computational efficiency.

4.3 Contributions of Different Parts of ASPC-DA

In this section, we perform ablation study to analyze the
contributions of three parts of the proposed ASPC-DA: data
augmentation in the pretraining stage (DA-S1), data aug-
mentation in the finetuning stage (DA-S2), and the adaptive
self-paced learning (ASP). Removing DA-S1 or DA-S2 from
ASPC-DA means replacing x̂with x (or setting T as identity
mapping) in (13) or (14). And disabling ASP in ASPC-DA
corresponds to fixing v ¼ 1 in (14). We regard the configura-
tion of removing all of the three parts as the BasicDC corre-
sponding to Section 3.1.

Table 5 shows the results of ASPC-DAwith different con-
figurations. When we individually add one of DA-S1, DA-S2
and ASP to the BasicDC, the performance improves in most
cases. And the most considerable improvement is seen by
adding DA-S1. In fact, the results at the last four rows are
consistently better than that at the first four rows. This result
reveals that the DA-S1 is the most crucial part of our ASPC-
DA algorithm. When adding two of the three parts together,
there is a huge performance improvement except for the
combination of AE-S2 and ASP where the performances on
MNIST-test, USPS, and Fashion degenerate abnormally. The
possible reason is that the feature space constructed by clean
examples in the pretraining stage is easy to be corrupted by
augmented examples that are first exposed to the neural net-
work in the finetuning stage. The ASP further prompts the
corruption of the feature space by only feeding part of aug-
mented examples. Finally, by being equipped with all of the
three parts, our ASPC-DA succeeds to achieve the best per-
formance on all datasets. We further validate the effective-
ness of BasicDC on more datasets in Appendix B, available
in the online supplemental material.

Based on the above analysis, we can directly use data
augmentation to extend any existing deep clustering algo-
rithm which involves pretraining an autoencoder. If there
exists a process of setting and updating “targets” of exam-
ples, we can incorporate data augmentation and ASP as
same as in Sections 3.2 and 3.3. We shall avoid introducing
data augmentation only to the finetuning stage.

4.4 Convergence

We record the variation of two loss values of our method
with iterations, i.e., the feature learning loss Lðv;wÞ and
clustering loss LðsÞ. They are defined as

TABLE 4
Running Time (in Seconds) of Different Algorithms

MNIST-full MNIST-test USPS Fashion

k-means 150 16 4 108
SC [42] 500 110 35 480
NMF-LP [43] 143 15 5 115
AC [3] 1162 22 7 1171
GMM [2] 1300 106 31 830
DeepCluster [30] 2200 120 100 1800
DCN [12] 1000 110 68 780
DEC [7] 1100 1170 900 1060
IDEC [11] 1400 800 560 1200
SR-k-means [18] 14000 1500 1400 4500
VaDE [20] 3000 420 90 2800
JULE [26] 20000 3600 2800 14000
DEPICT [10] 9000 2100 1600 7680
ASPC-DA 925 129 92 877

TABLE 5
Performances of ASPC-DA with Different Configurations

DA-S1 DA-S2 ASP MNIST-full MNIST-test USPS Fashion

ACC NMI ACC NMI ACC NMI ACC NMI

BasicDC � � � 0.912 0.857 0.764 0.709 0.701 0.721 0.562 0.633
ASPC � � @ 0.924 0.881 0.785 0.757 0.688 0.748 0.561 0.627
– � @ � 0.958 0.936 0.668 0.775 0.693 0.788 0.542 0.614
– � @ @ 0.945 0.938 0.531 0.690 0.552 0.711 0.533 0.608
– @ � � 0.972 0.931 0.930 0.867 0.953 0.896 0.592 0.650
– @ � @ 0.978 0.942 0.947 0.887 0.958 0.901 0.596 0.652
– @ @ � 0.987 0.963 0.970 0.931 0.977 0.939 0.584 0.651
ASPC-DA @ @ @ 0.988 0.966 0.973 0.936 0.982 0.951 0.591 0.654

DA-S1 (or DA-S2) represents data augmentation in the pretraining (or finetuning) stage. ASP denotes adaptive self-paced learning. Whether to use a specific
part (DA-S1, DA-S2, or ASP) in ASPC-DA algorithm is marked by “@” (yes) or “�” (no).
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Lðv;wÞ ¼ 1

n

Xn
i¼1

vikfwðx̂iÞ �Msik22 � �vi; (21)

LðsÞ ¼ 1

n

Xn
i¼1

kfwðxiÞ �Msik22: (22)

The results are plotted in Fig. 4. For all four datasets in our
experiments, both feature learning loss (21) and clustering
loss (22) decrease quickly toward 0 when the training itera-
tion increases. That is to say, our method usually converges
in practice.

We further investigate the convergence of our algorithmby
visualizing the learned features in different time of the optimi-
zation.We randomly sample 1,000 examples fromMNIST-full
dataset, and use PCA to project them into two-dimension
space from raw pixel space, feature space with iteration
t ¼ 0; 10; 100 during finetuning stage, respectively. As shown
in Fig. 5, data points projected from rawpixel space are highly
overlapped, implying the difficulty of the clustering. After the
pretraining stage, i.e., at the beginning of the finetuning stage,
feature points extracted from the encoder are more separable
than raw examples. But there are still many inseparable
points. As the finetuning process goes, say at the tenth itera-
tion, most data points in the same cluster have crowded
together, and only a few points are near cluster borders. At
the 100th iteration, feature points reach stability. We also
show the t-SNE [53] visualization of the final result which con-
firms the final feature points are nicely separated. The

Fig. 5. Visualization on a subset of MNIST-full with 1,000 examples for different phase of our algorithm. (a) PCA results on examples in raw pixel
space. The embedded points are highly overlapped. (b) PCA results on features extracted from the network at the beginning of finetuning. Data
points are more separable than (a) and this validate the effectiveness of the pretraining stage. (c) PCA on features when the network is finetuned for
10 iterations. (d) PCA results and (e) t-SNE results on features at the end of finetuning stage. Most data points are perfectly separated. (f) The trend
of ACC and NMI regarding the iterations of finetuning.

Fig. 4. Training losses. Both feature learning loss and clustering loss
keep decreasing for all datasets, which indicates our method is able to
converge in practice.
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performance keeps increasing in the first few iterations and
reaches stability at last, as shown in Fig. 5f.

4.5 Sensitivity of Hyper-Parameters

As shown in Table 2, there are some hyper-parameters
which can not be avoided when involving DNNs. It is
impossible to search in the whole parameter space. So we
determine most of hyper-parameters by following the same
setting in prior work of Xie et al. [7]. Here we first study
the sensitivity of hyper-parameters in data augmentation
which are first introduced in this paper. In our experiments,
only random rotation and shifting are used. We sample
0�; 10�; . . . ; 60� for rotation, and 0, 1, ..., 6 pixels for shifting
transformation. Then on each of the resulting 49 grids, we
run our ASPC-DA algorithm on MNIST-full dataset twice
and report the average result. In Fig. 6, we report relative
ACC which is relative to the performance of ASPC, i.e.,
ASPC-DA with rotation 0 degree and shifting 0 pixel. As
can be seen, our ASPC-DA outperforms the baseline ASPC
in a wide range. When shifting for up to 6 pixels and rota-
tion for up to 60 degree, the performance of our ASPC-DA
drops dramatically. This is not a surprise because there will
be a lot of information lost in this case. In the range of
½0�; 40�� for rotation and ½0; 4� pixels for shifting, our ASPC-
DA performs stably well. In a word, our ASPC-DA algo-
rithm is insensitive to the hyper-parameters introduced by
data augmentation in a wide range. For simplicity, we set
10 degree for rotation and

ffiffiffiffi
D

p
=10 pixels for shifting and

keep this setting fixed over all experiments. Actually, we
can further improve the current ACC (NMI) of our ASPC-
DA in Table 3 from 0.988 (0.966) to 0.990 (0.971) by using
rotation 10 degree and shifting 2 pixels.

Then we analyze how the network structure affects the
clustering performance. As mentioned before, the encoder
model is composed of four fully connected layers with num-
ber of neurons 500, 500, 2000, 10, respectively. We set the
fourth layer to 10 neurons because the input datasets all
have 10 clusters. So we keep it fixed. Due to the computing
resource and time limit, for each trial, we only change one
layer, and for each layer, we change the number of neurons
to one of f125; 250; 500; 1000; 2000; 4000g. The accuracies on
MNIST-full dataset are depicted in Fig. 7. No matter how

the number of neurons changes, the accuracy stably stays in
½0:982; 0:988�, which is still larger than that existing deep
clustering algorithms can achieve (see Table 3). In a word,
our ASPC-DA is insensitive to the network structure.

Finally, we discuss the stopping criterion (18) in more
detail. We shall analogize the stopping criterion in this
paper to the early stopping mechanism in supervised deep
neural networks. Therefore, it is not necessary to meet (18)
before ending the training. Instead, the maximum iterations
T serves as the main parameter to control when to stop
training. Fig. 8 shows the trends of clustering accuracy and
cluster change ratio (i.e., the left side of (18)) regarding the
finetuning iterations on MNIST-full dataset. It is easy to
notice that clustering accuracy and cluster change ratio
have reached a stable level after the 100th iteration. And the
cluster change ratio nearly stops decreasing after 0.001.
Therefore, setting the stopping threshold d ¼ 0:001 as the
convergence condition is a reasonable choice. On the other
hand, if we wait for (18) being met, we will end with

Fig. 6. Sensitivity analysis for the transformations (rotation and shifting)
used in data augmentation on MNIST-full. Relative ACC is the value rel-
ative to the performance at rotation 0 degree and shifting 0 pixel. In a
wide range, our ASPC-DA shows performance improvement regarding
the baseline.

Fig. 7. Sensitivity of the network structure on MNIST-full dataset. In a
wide range, the clustering accuracy is insensitive to the number of neu-
rons of the network.

Fig. 8. The trends of clustering accuracy and cluster change ratio regard-
ing the finetuning iterations. After the 100th iteration, the accuracy stays
stable.
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accuracy 0.9883 and computing time 392 seconds. However,
at the 100th iteration, the accuracy has reached 0.9878 and
computing time is 200 seconds. It means that we can only
increase 0.0005 of accuracy at the cost of 192 seconds. To
choose a better trade off between accuracy and computing
time, we set maximum iterations T ¼ 100.

5 EXTENSIONS

As shown in the line 2 of Algorithm 1, we initialize cluster
centersM and assignment labels s by performing k-means on
the features extracted from the pretrained autoencoder. This
makes the ASPC-DA algorithm inherit the drawbacks of
k-means: 1) performing bad on data with non-flat geometry,
and (2) requiring the number of clusters predetermined.
However, we realize that the k-means is not the only choice
for the initialization. We can naturally replace k-means with
spectral clustering (SC), Agglomerative Clustering (AC),
Gaussian Mixture Models (GMM), Robust Continuous
Clustering (RCC) [44], or any other clustering algorithms.
These algorithms will output the cluster assignments
s ¼ ½s1; s2; . . . ; sn�>. If the cluster centers are not defined and
output, the center of the jth cluster,mj, can be defined as the
average of data points zi with si ¼ j for i ¼ 1; 2; . . . ; n. Finally,
we obtain the cluster center matrix M ¼ ½m1;m2; . . . ;mK � 2
Rd�K , where d and K are the dimension of the feature space
and the number of clusters, respectively.We refer to asASPC-
DA-X the ASPC-DA initialized by X algorithm, where X can
be one of SC, AC, GMM, andRCC.

By using the same experimental settings with ASPC-DA,
we show the performances of these extended variants in
Table 6. First, ASPC-DA-X consistently outperforms X algo-
rithm by a large margin which validates that the proposed
ASPC-DA framework is responsible for the good perfor-
mance. Second, all the variants are comparable with the
baseline ASPC-DA algorithm. This indicates that changing
the initialization clustering algorithm is feasible and effec-
tive. Third, ASPC-DA-SC sets the new state-of-the-art per-
formance on Fashion dataset and leads its components by a
notable advantage. Finally, we emphasize that the good per-
formance of ASPC-DA-RCC algorithm is obtained without
the ground truth number of clusters pre-specified. And the
estimated numbers of clusters of MNIST-full, MNIST-test,
USPS, and Fashion datasets are 19.6 	 3.9, 22.3 	 2.1,

24.4 	 2.8, 19.0 	 0.0, respectively, which are in a reason-
able range. In Appendix C, available in the online supple-
mental material, we also demonstrate by toy datasets that
ASPC-DA-SC can handle data with non-flat geometry.
More exploration on these variants will be our future work.

6 CONCLUSION

We proposed an Adaptive Self-Paced deep Clustering with
Data Augmentation (ASPC-DA) algorithm to learn robust
cluster-oriented features. Our ASPC-DA excludes the exam-
ples near cluster boundaries from training by gradually
adding “easy” (close to cluster centers) examples. We for-
mulated the process of selecting examples and proposed an
adaptive self-paced learning algorithm which does not
introduce extra hyper-parameters. Data augmentation was
naturally incorporated as we related the unsupervised fea-
ture learning process to supervised learning. Extensive
experiments showed that the proposed ASPC-DA outper-
forms the state-of-the-art clustering methods. The ablation
study and sensitivity analysis further validated the effec-
tiveness of our algorithm. In the future, we plan on studying
the augmentation techniques for non-image data. Directly
adding Gaussian noise seems to be a potential choice, but
the effectiveness has not been observed. It is also worthy of
adopting techniques in this paper to other existing deep
clustering algorithms. At last, we would like to apply our
algorithm to real-world applications.
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